1
|
Zhao H, Li S, Pu J, Wang H, Zhang H, Li G, Qu L, Dou X. Effects and health risk assessments of different spray disinfectants on microbial aerosols in chicken houses. Poult Sci 2025; 104:105083. [PMID: 40132309 PMCID: PMC11986507 DOI: 10.1016/j.psj.2025.105083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 03/27/2025] Open
Abstract
This study aims to explore the effects of spray processes with four different disinfectants on airborne culturable and pathogenic microbial concentrations, microbial community compositions and health risk assessments in chicken houses. Results indicate that compared to the microbial concentrations before spraying, hypochlorous acid, glutaraldehyde-decamethonium bromide and sodium dichloroisocyanate increase culturable bacteria, culturable fungi, airborne Staphylococcus and Candida albicans, respectively. Beyond that, the spray processes with different disinfectants have no significant effects on the microbial concentrations. The total relative abundances (RAs) of the screened out 46 pathogenic bacterial genera decrease after spraying with povidone iodine, while increase after spraying with the other three disinfectants, which is opposite for the 35 pathogenic fungal genera. The core bacterial or fungal genera principally interrelate with each other through cooperation. Ammonia (NH3) concentrations, relative humidity (RH) and temperature (T) influence bacterial communities in aerosols; while fungal communities are mainly affected by T, particulate matters and nitrous oxide (N2O) concentrations. Long-term exposure to aerosols in chicken houses have potential adverse effects on human health and the spray processes with different disinfectants exacerbate the health risks of aerosols via inhalation. Hence, different spray disinfectants cannot significantly reduce the microbial aerosols in real chicken farm environments and the cleaning procedures should be comprehensively reviewed and optimized in livestock and poultry farms.
Collapse
Affiliation(s)
- Huaxuan Zhao
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, PR China
| | - Shangmin Li
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, PR China.
| | - Junhua Pu
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, PR China
| | - Hongzhi Wang
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, PR China
| | - Huiyong Zhang
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, PR China
| | - Guohui Li
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, PR China
| | - Liang Qu
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, PR China
| | - Xinhong Dou
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, PR China
| |
Collapse
|
2
|
Shen D, Wu X, Hui C, Zhang Y, Long Y. Characterization of pathogen distribution and pathogenicity from landfill site. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136736. [PMID: 39631205 DOI: 10.1016/j.jhazmat.2024.136736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/12/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
Landfills serve as significant environmental reservoirs for pathogens. This study investigated the abundance, distribution characteristics, and influencing factors of pathogens both within the landfill and its surrounding environment. The results unveiled contamination by pathogens in the external atmosphere (5.6 × 107 CFU/m3), soil (1.0 × 109 CFU/g), vegetation (4.7 × 1010 CFU/g), and groundwater (1.2 × 108 CFU/mL), with notably higher levels within the landfill. The abundance of human bacterial pathogens (HBPs) and antibiotic resistance genes (ARGs) in the landfill waste escalates with depth, particularly highlighting the concentration of multidrug ARGs and dominant offensive virulence factors (VFs). Furthermore, the discernible nonrandom co-occurrence patterns among ARGs, VFs, and HBPs intensify the resistance and pathogenicity of HBPs in the landfill waste. The shift in the HBPs community plays a pivotal role in shaping the genomic profiles of VFs and ARGs in the environment. Pathogens such as Pseudomonas aeruginosa, Salmonella enterica, Staphylococcus aureus, and Mycobacterium tuberculosis are prevalent in waste samples, harboring multiple ARGs and VFs, rendering them high-risk HBPs in landfills. The insights into the distribution and pathogenicity of microorganisms at various landfill depths, alongside the contamination status outside the landfill, hold significant implications for the targeted management of pathogens in landfills.
Collapse
Affiliation(s)
- Dongsheng Shen
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Xinxin Wu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Cai Hui
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Yuejin Zhang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Yuyang Long
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China.
| |
Collapse
|
3
|
Zheng Z, Ji W, Wang X, Wang X, Dai S, Zhang Z, Zhang Y, Wang X, Cao S, Chen M, Xie B, Feng J, Wu D. Household waste-specific ambient air shows greater inhalable antimicrobial resistance risks in densely populated communities. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 194:309-317. [PMID: 39862584 DOI: 10.1016/j.wasman.2025.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/19/2024] [Accepted: 01/19/2025] [Indexed: 01/27/2025]
Abstract
Household waste is a hotspot of antibiotic resistance, which can be readily emitted to the ambient airborne inhalable particulate matters (PM10) during the day-long storage in communities. Nevertheless, whether these waste-specific inhalable antibiotic resistance genes (ARGs) are associated with pathogenic bacteria or pose hazards to local residents have yet to be explored. By high-throughput metagenomic sequencing and culture-based antibiotic resistance validation, we analyzed 108 airborne PM10 and nearby environmental samples collected across different types of residential communities in Shanghai, the most populous city in China. Compared to the cold-dry period, the warm-humid season had significantly larger PM10-associated antibiotic resistomes in all types of residential communities (T-test, P < 0.001), most of airborne ARGs in which were estimatedly originated from disposed household waste (∼ 30 %). In addition, the airborne bacteria were assembled in a deterministic approach (iCAMP, P < 0.01), where the waste-specific bacteria taxa including Acinetobacter, Pseudomonas, Rhodococcus, and Kocuria had the predominant niches in the airborne microbial assemblages. Notably, these waste-sourced bacteria were also identified as the primary airborne hosts of ARGs encoding the aminoglycoside resistances. Among them, some antibiotic resistant human pathogens, such as Pseudomonas aeruginosa and Acinetobacter baumannii, not only exhibited higher ARG horizontal gene transfer (HGT) potential across the microbial assemblages, but also imposed direct infection risks on the local residents by 2 min inhalation exposure per day. When the daily exposure duration increased to 11 min, the infection-induced illness burden became unignorably high, especially in densely populated urban communities, being twofold greater than rural areas.
Collapse
Affiliation(s)
- Zhipeng Zheng
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Science, East China Normal University, Shanghai 200241, PR China; Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, PR China
| | - Wenhui Ji
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Science, East China Normal University, Shanghai 200241, PR China; Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, PR China
| | - Xiao Wang
- Pudong District Center for Disease Control & Prevention, Shanghai 200136, PR China
| | - Xueting Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Science, East China Normal University, Shanghai 200241, PR China; Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, PR China
| | - Simin Dai
- Shanghai Municipal Center for Disease Control & Prevention, Shanghai 200336, PR China
| | - Zhaowen Zhang
- Minhang District Center for Disease Control & Prevention, Shanghai 201101, PR China
| | - Yinghua Zhang
- Minhang District Center for Disease Control & Prevention, Shanghai 201101, PR China
| | - Xiaoyan Wang
- Yangpu District Center for Disease Control & Prevention, Shanghai 200090, PR China
| | - Shen Cao
- Yangpu District Center for Disease Control & Prevention, Shanghai 200090, PR China
| | - Min Chen
- Shanghai Municipal Center for Disease Control & Prevention, Shanghai 200336, PR China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Science, East China Normal University, Shanghai 200241, PR China
| | - Jun Feng
- Shanghai Municipal Center for Disease Control & Prevention, Shanghai 200336, PR China
| | - Dong Wu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Science, East China Normal University, Shanghai 200241, PR China; Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, PR China.
| |
Collapse
|
4
|
Ma R, Peng L, Tang R, Jiang T, Chang J, Li G, Wang J, Yang Y, Yuan J. Bioaerosol emission characteristics and potential risks during composting: Focus on pathogens and antimicrobial resistance. JOURNAL OF HAZARDOUS MATERIALS 2025; 481:136466. [PMID: 39549575 DOI: 10.1016/j.jhazmat.2024.136466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/19/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024]
Abstract
In this study, we analyzed bioaerosol emission characteristics and potential risks of antimicrobial resistance (AMR) during composting using the impaction culture method and metagenomic sequencing. The results showed that the highly saturated water vapor in the emission gas mitigated particulate matter emission during the thermophilic period. About the bioaerosols, the airborne aerobic bacterial emissions were suppressed as composting enters the mature period, and the airborne fungi are usually present as single-cell or small-cell aggregates (< 3.3 µm). In addition, the microbial community structure in bioaerosols was stable and independent of composting time. Most importantly, the PM2.5 in bioaerosols contained large amounts of antibiotic resistance genes (ARGs), potential pathogens, and multidrug resistant pathogens, which were diverse and present in high concentrations. Among them, ARGs concentrations encoding 21 antibiotics ranged from - 4.50 to 0.70 ppm/m3 (Log10 ARGs). Among the 89 potential human pathogens detected, Escherichia coli, Salmonella enterica, Klebsiella pneumoniae, and Staphylococcus aureus were the only culturable potentially multidrug resistant pathogens carrying multiple ARGs encoding resistance at high concentrations (- 0.57 to 1.15 ppm/m3 (Log10 ARGs)), and were more likely to persist and multiply in oligotrophic environments. Our findings indicate that composting technology can transfer AMR from solid compost to gas phase and increase the risk of AMR transmission.
Collapse
Affiliation(s)
- Ruonan Ma
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Lijuan Peng
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Ruolan Tang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Tao Jiang
- School of New Energy Materials and Chemistry, Leshan Normal University, Sichuan 614000, China
| | - Jiali Chang
- School of New Energy Materials and Chemistry, Leshan Normal University, Sichuan 614000, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Jiani Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Yan Yang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Jing Yuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
5
|
Gao T, Wang W, Ma J, Zheng T, Li L. Diffusion behavior and transport risk of bioaerosol particles in a domestic waste landfill site in an arid and cold region of northwestern China. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135629. [PMID: 39197283 DOI: 10.1016/j.jhazmat.2024.135629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024]
Abstract
Bioaerosols have attracted increasing attention as novel contaminants because of their potential role in the spread of disease. In this study, sampling sites were established in a landfill in northwestern China with the aim of investigating the emission and diffusion characteristics of bioaerosols. The results revealed that the counts of airborne bacteria released by landfill cover area (LCA) and waste dumping area (WDA) located in the landfill area reached 18 193 ± 30 CFU/m3 and 10 948 ± 105 CFU/m3, respectively. These two aeras were the main sources of bioaerosol generation. Meanwhile, Corynebacterium spp., Bacteroidetes spp., and Pseudomonas spp. were identified as potential pathogens. A Gaussian model was applied to simulate the diffusion of the bioaerosols; the influence distance was calculated as 12 km from the boundary of the landfill site. The potential health risks of bioaerosol exposure to on-site workers and nearby residents were calculated and evaluated in terms of aerosol concentration, particle size, and pathogenic bacteria. The present study promotes the recognition of the emission behavior of microorganisms in aerosol particles and provides a basis for controlling bioaerosol contamination from landfill sites, particularly those located in cold and arid northwestern regions of China.
Collapse
Affiliation(s)
- Tong Gao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Wenwen Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Jiawei Ma
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China.
| | - Tianlong Zheng
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Lin Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, PR China.
| |
Collapse
|
6
|
Geng X, Nie C, Li D, Wang M, Wu Y, Sun X, An T, Yao M, Huang J, Chen J. A potential bioaerosol source from kitchen chimneys in restaurants. ENVIRONMENT INTERNATIONAL 2024; 193:109115. [PMID: 39500121 DOI: 10.1016/j.envint.2024.109115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 10/09/2024] [Accepted: 10/30/2024] [Indexed: 11/25/2024]
Abstract
Bioaerosols are ubiquitous and have a substantial impact on the atmosphere and human health. Despite the identification of numerous bioaerosol emission sources, the contribution of anthropogenic sources remains inadequately understood. In kitchens, oil stains accumulated at the vent may discharge microorganisms into the environment with airflow, potentially discharging bioaerosol pollution. This putative anthropogenic source of bioaerosols has been long ignored. To investigated whether kitchen chimneys can be a potential source for bioaerosols, air samples, oil stains from in/out chimneys, and surface sand samples were collected near several commercial restaurants. PCoA showed that sampling sites significantly impacted microbiomes, whereas SourceTracker analysis led to the finding that waste grease significantly contributed to bioaerosol composition. Both findings agree with the kitchen chimney as a source of microbes in bioaerosols in the surrounding environment. Furthermore, despite the low biodiversity, a high proportion of stress-tolerant and potential pathogenic bacteria and fungi were found in residual culinary grease, which may escape into the air causing potential risks to human beings. These results led to the proposal that airborne microbiota can originate from cooking waste grease. Immediate actions should be taken into account to enhance disinfection and sterilization aimed at fume vents.
Collapse
Affiliation(s)
- Xueyun Geng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science & Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200438, China
| | - Changliang Nie
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science & Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200438, China; School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Dan Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science & Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200438, China
| | - Mingyu Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yan Wu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaomin Sun
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Taicheng An
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Maosheng Yao
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jianping Huang
- Collaborative Innovation Center for Western Ecological Safety, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science & Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200438, China; IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China; Institute of Eco-Chongming (IEC), Shanghai 200062, China.
| |
Collapse
|
7
|
Shi YC, Gou F, Chen AL, Xing ZL, Zhang Q, Wu H, Zhao TT. Influence and mechanism of typical transition metal ions on the denitrification performance of heterotrophic nitrification-aerobic denitrification bacteria. ENVIRONMENTAL RESEARCH 2024; 258:119460. [PMID: 38906451 DOI: 10.1016/j.envres.2024.119460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/21/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
To investigate the inhibitory effects of various transition metal ions on nitrogen removal and their underlying mechanisms, the single and combined effects of Cu2+ Ni2+ and Zn2+ on Heterotrophic nitrification-aerobic denitrification (HN-AD) bacteria Acinetobacter sp. TAC-1 were studied in a batch experiment system. The results revealed that increasing concentrations of Cu2+ and Ni2+ had a detrimental effect on the removal of ammonium nitrogen (NH4+-N) and total nitrogen (TN). Specifically, Cu2+ concentration of 10 mg/L, the TN degradation rate was 55.09%, compared to 77.60% in the control group. Cu2+ exhibited a pronounced inhibitory effect. In contrast, Zn2+ showed no apparent inhibitory effect on NH4+-N removal and even enhanced TN removal at lower concentrations. However, when the mixed ion concentration of Zn2++Ni2+ exceeded 5 mg/L, the removal rates of NH4+-N and TN were significantly reduced. Moreover, transition metal ions did not significantly impact the removal rates of chemical oxygen demand (COD). The inhibition model fitting results indicated that the inhibition sequence was Cu2+ > Zn2+ > Ni2+. Transcriptome analysis demonstrated that metal ions influence TAC-1 activity by modulating the expression of pivotal genes, including zinc ABC transporter substrate binding protein (znuA), ribosomal protein (rpsM), and chromosome replication initiation protein (dnaA) and DNA replication of TAC-1 under metal ion stress, leading to disruptions in transcription, translation, and cell membrane structure. Finally, a conceptual model was proposed by us to summarize the inhibition mechanism and possible response strategies of TAC-1 bacteria under metal ion stress, and to address the lack of understanding regarding the influence mechanism of TAC-1 on nitrogen removal in wastewater co-polluted by metal and ammonia nitrogen. The results provided practical guidance for the management of transition metal and ammonia nitrogen co-polluted water bodies, as well as the removal of high nitrogen.
Collapse
Affiliation(s)
- Yun-Chun Shi
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Fan Gou
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Ai-Ling Chen
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Zhi-Lin Xing
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China.
| | - Qian Zhang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Heng Wu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Tian-Tao Zhao
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| |
Collapse
|
8
|
Wu X, Shen D, Hui C, Yu Q, Long Y. Evaluation of pathogen spread risk from excavated landfill. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123993. [PMID: 38636838 DOI: 10.1016/j.envpol.2024.123993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/01/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Landfill is a huge pathogen reservoir and needs special attention. Herein, the distribution and spread risk of pathogen were assessed in excavated landfill scenario. The results show that landfill excavation will greatly increase the risk of environmental microbial contamination. The highest total concentration of culturable bacteria among landfill refuse, topsoil and plant leaves was found to be as high as 1010 CFU g-1. Total coliforms, Hemolytic bacteria, Staphylococcus aureus, Salmonella, Enterococci, and Fecal coliforms were detected in the landfill surrounding environment. Notably, pathogens were more likely to adhere to plant leaves, making it an important source of secondary pathogens. The culturable bacteria concentration in the air samples differed with the landfill zone with different operation status, and the highest culturable bacteria concentration was found in the excavated area of the landfill (3.3 × 104 CFU m-3), which was the main source of bioaerosol release. The distribution of bioaerosols in the downwind outside of the landfill showed a tendency of increasing and then decreasing, and the highest concentration of bioaerosols outside of the landfill (6.56 × 104 CFU m-3) was significantly higher than that in the excavated area of the landfill. The risk of respiratory inhalation was the main pathway leading to infection, whereas the HQin (population inhalation hazardous quotient) at 500 m downwind the excavation landfill was still higher than 1, indicating that the neighboring residents were exposed to airborne microbial pollutants. The results of the study provide evidence for bioaerosols control protective measures taken to reduce health risk from the excavated landfill.
Collapse
Affiliation(s)
- Xinxin Wu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Dongsheng Shen
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Cai Hui
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Qiang Yu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Yuyang Long
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China.
| |
Collapse
|
9
|
Li A, Qiu X, Jiang X, Shi X, Liu J, Cheng Z, Chai Q, Zhu T. Alteration of the health effects of bioaerosols by chemical modification in the atmosphere: A review. FUNDAMENTAL RESEARCH 2024; 4:463-470. [PMID: 38933216 PMCID: PMC11197536 DOI: 10.1016/j.fmre.2023.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 06/12/2023] [Accepted: 10/13/2023] [Indexed: 06/28/2024] Open
Abstract
Bioaerosols are a subset of important airborne particulates that present a substantial human health hazard due to their allergenicity and infectivity. Chemical reactions in atmospheric processes can significantly influence the health hazard presented by bioaerosols; however, few studies have summarized such alterations to bioaerosols and the mechanisms involved. In this paper, we systematically review the chemical modifications of bioaerosols and the impact on their health effects, mainly focusing on the exacerbation of allergic diseases such as asthma, rhinitis, and bronchitis. Oxidation, nitration, and oligomerization induced by hydroxyl radicals, ozone, and nitrogen dioxide are the major chemical modifications affecting bioaerosols, all of which can aggravate allergenicity mainly through immunoglobulin E pathways. Such processes can even interact with climate change including the greenhouse effect, suggesting the importance of bioaerosols in the future implementation of carbon neutralization strategies. In summary, the chemical modification of bioaerosols and the subsequent impact on health hazards indicate that the combined management of both chemical and biological components is required to mitigate the health hazards of particulate air pollution.
Collapse
Affiliation(s)
- Ailin Li
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xinghua Qiu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xing Jiang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xiaodi Shi
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jinming Liu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Zhen Cheng
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Qianqian Chai
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Tong Zhu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
10
|
Zhang T, Zhang D, Lyu Z, Zhang J, Wu X, Yu Y. Effects of extreme precipitation on bacterial communities and bioaerosol composition: Dispersion in urban outdoor environments and health risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123406. [PMID: 38244904 DOI: 10.1016/j.envpol.2024.123406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/22/2024]
Abstract
Concerns about contaminants dispersed by seasonal precipitation have grown due to their potential hazards to outdoor environments and human health. However, studies on the crucial environmental factors influencing dispersion changes in bacterial communities are limited. This research adopted four-season in situ monitoring and sequencing techniques to examine the regional distribution profiles of bioaerosols, bacterial communities, and risks associated with extreme snowfall versus rainfall events in two monsoon cities. In the early-hours of winter snowfall, airborne cultivable bioaerosol concentrations were 4.1 times higher than the reference exposure limit (500 CFU/m3). The concentration of ambient particles (2.5 μm) exceeded 24,910 particles/L (97 μg/m3), positively correlating with the prevalence of cultivable bioaerosols. These bioaerosols contained cultivable bacterial species such as pathogenic Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, and Escherichia coli. Bioaerosol concentrations increased by 53.0% during 50-mm snow extremes. Taxonomic analysis revealed that Pseudomonas, Staphylococcus, and Veillonella were the most abundant bacterial taxa in the initial snowmelt samples during winter precipitation. However, their abundance decreased by 87.6% as snowing continued (24 h). Reduced water base cation concentration also led to a 1.15-fold increase in the Shannon index, indicating a similar yet heightened bacterial diversity. Seasonally, Pedobacter and Massilia showed higher relative abundance (25% and 18%, respectively), presenting increased bacterial transmission to the soil. Furthermore, Pseudomonas was identified in 60% of spring snowstorm samples, suggesting long-distance dispersal of pathogenic bacteria. When these atmospheric aerosol particles carrying biological entities (0.65-1.1 μm) penetrated human alveoli, the calculated hazard ratio was 0.55, which as observed in inhalation exposures. Consequently, this study underscores the risk of seasonal precipitation-enhanced ambient bacterial transmission.
Collapse
Affiliation(s)
- Ting Zhang
- College of Civil Engineering, Liaoning Technical University, Fuxin, 123000, China
| | - Dingqiang Zhang
- College of Civil Engineering, Liaoning Technical University, Fuxin, 123000, China
| | - Zhonghang Lyu
- College of Civil Engineering, Liaoning Technical University, Fuxin, 123000, China
| | - Jitao Zhang
- College of Civil Engineering, Liaoning Technical University, Fuxin, 123000, China
| | - Xian Wu
- College of Civil Engineering, Liaoning Technical University, Fuxin, 123000, China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
11
|
Yang T, Wang X, Jiang L, Sui X, Bi X, Jiang B, Zhang Z, Li X. Antibiotic resistance genes associated with size-segregated bioaerosols from wastewater treatment plants: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123169. [PMID: 38128715 DOI: 10.1016/j.envpol.2023.123169] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/23/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
The antibiotic-resistant pollution in size-segregated bioaerosols from wastewater treatment plants (WWTPs) is of increasing concern due to its public health risks, but an elaborate review is still lacking. This work overviewed the profile, mobility, pathogenic hosts, source, and risks of antibiotic resistance genes (ARGs) in size-segregated bioaerosols from WWTPs. The dominant ARG type in size-segregated bioaerosols from WWTPs was multidrug resistance genes. Treatment units that equipped with mechanical facilities and aeration devices, such as grilles, grit chambers, biochemical reaction tanks, and sludge treatment units, were the primary sources of bioaerosol antibiotic resistome in WWTPs. Higher enrichment of antibiotic resistome in particulate matter with an aerodynamic diameter of <2.5 μm, was found along the upwind-downwind-WWTPs gradient. Only a small portion of ARGs in inhalable bioaerosols from WWTPs were flanked by mobile genetic elements. The pathogens with multiple drug resistance had been found in size-segregated bioaerosols from WWTPs. Different ARGs or antibiotic resistant bacteria have different aerosolization potential associated with bioaerosols from various treatment processes. The validation of pathogenic antibiotic resistance bacteria, deeper investigation of ARG mobility, emission mechanism of antibiotic resistome, and development of treatment technologies, should be systematically considered in future.
Collapse
Affiliation(s)
- Tang Yang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| | - Xuyi Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| | - Lu Jiang
- College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao, 266100, PR China.
| | - Xin Sui
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| | - Xuejun Bi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| | - Bo Jiang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| | - Zhanpeng Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| | - Xinlong Li
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| |
Collapse
|
12
|
Prakash O, Dewala SR, Nimonkar Y, Patil SK, Chauhan A, Yadav A, Dhotre DP, Ranade DR. Culture-based and culture-independent approach for the study of the methanogens and obligate anaerobes from different landfill sites. Front Microbiol 2024; 14:1273037. [PMID: 38348306 PMCID: PMC10860756 DOI: 10.3389/fmicb.2023.1273037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 12/27/2023] [Indexed: 02/15/2024] Open
Abstract
The landfill is a cheap way of solid waste management in developing countries. The majority of landfills are non-sanitary and work as open garbage dumping sites and pose threats to public and environmental health. Therefore, an in-depth understanding of the chemistry and microbiology of landfills is imperative to develop the right policies for landfill management. In the current study, we investigated the chemistry and microbiology of three Indian landfill sites using culture-based and culture-independent molecular approaches. Our data indicate that the nature of landfills varies from site to site in terms of chemistry, pollutants, and pathogens. We also enriched and cultivated three methanogens using an optimized medium and constructed two high-quality draft genomes from enriched microbiomes using metagenome-assembled genome approaches. The phylogenomic study of one draft genome showed the highest 93% sequence similarity with members of Methanomassiliicoccaceae and was always enriched with Acholoplasma and Anaerohalosphaera lusitana. Despite all the efforts, we did not isolate it in pure culture and hypothesized that for the cultivation of some not-yet-cultured methanogen, the presence of other organisms plays an important role, and their syntrophic interaction must be discerned for its successful cultivation in the future. Co-cultivation of amino acid-degrading organisms indicates that their co-culture can assist in boosting the growth of methanogens. In addition, our data indicated that landfill leachate contains a heavy load of pollutants and treatment is a must before discharge in nature or use in irrigation or biofertilizer.
Collapse
Affiliation(s)
- Om Prakash
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Pune, India
| | - Sahab Ram Dewala
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Pune, India
| | - Yogesh Nimonkar
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Pune, India
| | - Shalaka K. Patil
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Pune, India
| | - Ashvini Chauhan
- Environmental Biotechnology at the School of the Environment, Florida A&M University, Tallahassee, FL, United States
| | - Amit Yadav
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Pune, India
| | - Dheeraj P. Dhotre
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Pune, India
| | - Dilip R. Ranade
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Pune, India
| |
Collapse
|
13
|
Wu D, Xie J, Liu Y, Jin L, Li G, An T. Metagenomic and Machine Learning Meta-Analyses Characterize Airborne Resistome Features and Their Hosts in China Megacities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16414-16423. [PMID: 37844141 DOI: 10.1021/acs.est.3c02593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Urban ambient air contains a cocktail of antibiotic resistance genes (ARGs) emitted from various anthropogenic sites. However, what is largely unknown is whether the airborne ARGs exhibit site-specificity or their pathogenic hosts persistently exist in the air. Here, by retrieving 1.2 Tb metagenomic sequences (n = 136), we examined the airborne ARGs from hospitals, municipal wastewater treatment plants (WWTPs) and landfills, public transit centers, and urban sites located in seven of China's megacities. As validated by the multiple machine learning-based classification and optimization, ARGs' site-specificity was found to be the most apparent in hospital air, with featured resistances to clinical-used rifamycin and (glyco)peptides, whereas the more environmentally prevalent ARGs (e.g., resistance to sulfonamide and tetracycline) were identified being more specific to the nonclinical ambient air settings. Nearly all metagenome-assembled genomes (MAGs) that possessed the site-featured resistances were identified as pathogenic taxa, which occupied the upper-representative niches in all the neutrally distributed airborne microbial community (P < 0.01, m = 0.22-0.50, R2 = 0.41-0.86). These niche-favored putative resistant pathogens highlighted the enduring antibiotic resistance hazards in the studied urban air. These findings are critical, albeit the least appreciated until our study, to gauge the airborne dimension of resistomes' features and fates in urban atmospheric environments.
Collapse
Affiliation(s)
- Dong Wu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, Chongqing Institute of East China Normal University, East China Normal University, Shanghai 200241, P. R. China
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiawen Xie
- Department of Civil and Environmental Engineering and Research Institute for Sustainable Urban Development, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Yangying Liu
- Department of Computer Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Ling Jin
- Department of Civil and Environmental Engineering and Research Institute for Sustainable Urban Development, The Hong Kong Polytechnic University, Kowloon, Hong Kong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
14
|
Fang R, Chen T, Han Z, Ji W, Bai Y, Zheng Z, Su Y, Jin L, Xie B, Wu D. From air to airway: Dynamics and risk of inhalable bacteria in municipal solid waste treatment systems. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132407. [PMID: 37651934 DOI: 10.1016/j.jhazmat.2023.132407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/14/2023] [Accepted: 08/24/2023] [Indexed: 09/02/2023]
Abstract
Municipal solid waste treatment (MSWT) system emits a cocktail of microorganisms that jeopardize environmental and public health. However, the dynamics and risks of airborne microbiota associated with MSWT are poorly understood. Here, we analyzed the bacterial community of inhalable air particulates (PM10, n = 71) and the potentially exposed on-site workers' throat swabs (n = 30) along with waste treatment chain in Shanghai, the largest city of China. Overall, the airborne bacteria varied largely in composition and abundance during the treatment (P < 0.05), especially in winter. Compared to the air conditions, MSWT-sources that contributed to 15 ∼ 70% of airborne bacteria more heavily influenced the PM10-laden bacterial communities (PLS-SEM, β = 0.40, P < 0.05). Moreover, our year-span analysis found PM10 as an important media spreading pathogens (104 ∼ 108 copies/day) into on-site workers. The machine-learning identified Lactobacillus and Streptococcus as pharynx-niched featured biomarker in summer and Rhodococcus and Capnocytophaga in winter (RandomForest, ntree = 500, mtry = 10, cross = 10, OOB = 0%), which closely related to their airborne counterparts (Procrustes test, P < 0.05), suggesting that MSWT a dynamic hotspot of airborne bacteria with the pronounced inhalable risks to the neighboring communities.
Collapse
Affiliation(s)
- Ru Fang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Tian Chen
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, SAR China
| | - Zhibang Han
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Wenhui Ji
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yudan Bai
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Zhipeng Zheng
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Ling Jin
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, SAR China; Department of Health Technology and Informatics, The Hong Kong Polytechnic University, 999077, Hong Kong, SAR China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Dong Wu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, PR China.
| |
Collapse
|