1
|
Chen W, Huangfu X, Liu Y, Huang Y, Zhang X, Wu S, Liu H, He Q. Sustained Tl(I) removal by α-MnO 2: Dual role of tunnel structure incorporation and surface catalytic oxidation. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137137. [PMID: 39793394 DOI: 10.1016/j.jhazmat.2025.137137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/04/2025] [Accepted: 01/04/2025] [Indexed: 01/13/2025]
Abstract
Manganese oxide-based filtration technologies are considered cost-effective for thallium (Tl) removal in engineered systems. However, current gaps in understanding the heterogeneous adsorption and oxidation mechanisms of typical tunneled α-MnO2 may lead to a serious underestimation of its long-term Tl removal potential. In this study, α-MnO2 could continuously remove Tl(I) during the 584-h reaction, with its irreversible removal eventually increasing to 81 %-95 % in different anionic environments. The adsorbed low-loaded Tl(I) is preferentially oxidized, whereas the high-loaded Tl tends to be adsorbed in a nonoxidative pathway by α-MnO2. The nonoxidized Tl(I) was gradually immobilized in the stable thalliomelane-like tunnel structure. More importantly, the synergism of surface Mn(III)-oxygen vacancies (Ov) on α-MnO2 could catalyze the oxidation of Tl(I). Furthermore, the oxidized Tl(III) was bound to the tunnel surface via double edge-sharing and double corner-sharing. In addition, the phosphate anion occupied the surface active site and inhibited the oxidation of Tl(I), thereby reducing the binding strength of Tl. This study provides a new perspective on the effectiveness and stability of Tl(I) removal by MnO2 and highlights the neglected mechanism of Mn(III)-Ov mediating Tl(I) oxidation, which expands our understanding of the removal and transformation fate of Tl in MnO2-engineered systems.
Collapse
Affiliation(s)
- Wanpeng Chen
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Xiaoliu Huangfu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| | - Yu Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Yuheng Huang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Xiaoling Zhang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Sisi Wu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Hongxia Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Qiang He
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| |
Collapse
|
2
|
Luo J, Cai D, Wei L, Shi H, Liu Y, Yan H, Luo D, Xiao T, Huang X, Wu Q. Aggregation, retention and transport of γ-MnO 2 nanoparticles in water-saturated porous media: Impact on the immobility of thallium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123711. [PMID: 38447654 DOI: 10.1016/j.envpol.2024.123711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/08/2024] [Accepted: 03/03/2024] [Indexed: 03/08/2024]
Abstract
Nano-scale Mn oxides can act as effective stabilizers for Tl in soil and sediments. Nevertheless, the comprehensive analysis of the capacity of MnO2 to immobilize Tl in such porous media has not been systematically explored. Therefore, this study investigates the impact of γ-MnO2, a model functional nanomaterial for remediation, on the mobility of Tl in a water-saturated quartz sand-packed column. The mechanisms involved are further elucidated based on the adsorption and aggregation kinetics of γ-MnO2. The results indicate that higher ionic strength (IS) and the presence of ion Ca(II) promote the aggregation of γ-MnO2, resulting from the reduced electrostatic repulsion between particles. Conversely, an increase in pH inhibits aggregation due to enhanced interaction energy. γ-MnO2 significantly influences Tl retention and mobility, with a substantial fraction of γ-MnO2-bound Tl transported through the column. This might be attributed to the high affinity of γ-MnO2 for Tl through ion exchange reactions and precipitation at the surface of γ-MnO2. The mobility of Tl in the sand column is influenced by the γ-MnO2 colloids, exhibiting either inhibition or promotion depending on the pH, IS, and cation type of the solution. In solutions with higher IS and Ca(II), the mobility of Tl decreases as γ-MnO2 colloids tend to aggregate, strain, and block, facilitating colloidal Tl retention in porous media. Although higher pH reduces the mobility of individual Tl, it promotes the mobility of γ-MnO2 colloids, facilitating a substantial fraction of colloidal-form Tl. Consequently, the optimal conditions for stabilizing Tl by γ-MnO2 involve either high IS and low pH or the presence of competitive cations (e.g., Ca(II)). These findings provide new insights into Tl immobilization using MnO2- and Mn oxide-based functional materials, offering potential applications in the remediation of Tl contamination in soil and groundwater.
Collapse
Affiliation(s)
- Jiaming Luo
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Dafeng Cai
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Lezhang Wei
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; Linköping University-Guangzhou University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou, 510006, China.
| | - Hang Shi
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yu Liu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; Linköping University-Guangzhou University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou, 510006, China
| | - Haiqi Yan
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Dinggui Luo
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Tangfu Xiao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China
| | - Xuexia Huang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Qihang Wu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
3
|
Huang Y, Liu Z, Liu H, Ma C, Chen W, Huangfu X. Removal of thallium by MnOx coated limestone sand filter through regeneration of KMnO 4: Combination of physiochemical and biochemical actions. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132947. [PMID: 37956563 DOI: 10.1016/j.jhazmat.2023.132947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/22/2023] [Accepted: 11/05/2023] [Indexed: 11/15/2023]
Abstract
Treatment of industrial thallium(Tl)-containing wastewater is crucial for mitigating environmental risks and health threats associated with this toxic metal. The incorporation of Mn oxides (MnOx) into the filtration system is a promising solution for efficient Tl(I) removal. However, further research is needed to elucidate the underlying mechanism behind MnOx-enhanced filtration and the rules of its stable operation. In this study, limestone, a cost-effective material, was selected as the filter media. Raw water with Mn(II), Tl(I), and other pollutants was prepared after a thorough investigation of actual industrial wastewater conditions. KMnO4 was added to induce the formation of MnO2 on limestone surfaces, while long-term operation led to enrichment of manganese oxidizing microorganisms (MnOM). Results revealed a dual mechanism. Firstly, most Mn(II) were oxidized by KMnO4 to form MnO2 attaching to limestone sands, and both Tl(I) and residual Mn(II) were adsorbed onto the newly formed MnO2. Subsequently, enzymes secreted by MnOM facilitated oxidation of remaining Mn(II), resulting in the generation of biogenic manganese oxides (BioMnOx) with numerous vacancies during long-term operation. The generated BioMnOx not only adsorbed Mn(II) and Tl(I) but also promoted their oxidation process. This approach offers an effective and sustainable method for removing both Mn(II) and Tl(I) from industrial wastewater, thereby addressing the challenges posed by thallium-contaminated effluents.
Collapse
Affiliation(s)
- Yuheng Huang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing 400044, China
| | - Ziqiang Liu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing 400044, China
| | - Hongxia Liu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing 400044, China.
| | - Chengxue Ma
- State Key Laboratory of Urban Water Resource, and Environment, School of Municipal, and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Wanpeng Chen
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing 400044, China
| | - Xiaoliu Huangfu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
4
|
Liu J, Yuan W, Ouyang Q, Bao Z, Xiao J, Xiong X, Cao H, Zhong Q, Wan Y, Wei X, Zhang Y, Xiao T, Wang J. A novel application of thallium isotopes in tracing metal(loid)s migration and related sources in contaminated paddy soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163404. [PMID: 37059145 DOI: 10.1016/j.scitotenv.2023.163404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 06/01/2023]
Abstract
Thallium (Tl) is a highly toxic heavy metal, which is harmful to plants and animals even in trace amounts. Migration behaviors of Tl in paddy soils system remain largely unknown. Herein, Tl isotopic compositions have been employed for the first time to explore Tl transfer and pathway in paddy soil system. The results showed considerably large Tl isotopic variations (ε205Tl = -0.99 ± 0.45 ~ 24.57 ± 0.27), which may result from interconversion between Tl(I) and Tl(III) under alternative redox conditions in the paddy system. Overall higher ε205Tl values of paddy soils in the deeper layers were probably attributed to abundant presence of Fe/Mn (hydr)oxides and occasionally extreme redox conditions during alternative dry-wet process which oxidized Tl(I) to Tl(III). A ternary mixing model using Tl isotopic compositions further disclosed that industrial waste contributed predominantly to Tl contamination in the studied soil, with an average contribution rate of 73.23%. All these findings indicate that Tl isotopes can be used as an efficient tracer for fingerprinting Tl pathway in complicated scenarios even under varied redox conditions, providing significant prospect in diverse environmental applications.
Collapse
Affiliation(s)
- Juan Liu
- School of Environmental Science and Engineering and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Wenhuan Yuan
- School of Environmental Science and Engineering and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Qi'en Ouyang
- School of Environmental Science and Engineering and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Zhi'an Bao
- State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an 710069, China
| | - Jun Xiao
- SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences (IEECAS), Xi'an 710061, China
| | - Xinni Xiong
- School of Environmental Science and Engineering and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Huimin Cao
- School of Environmental Science and Engineering and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Qiaohui Zhong
- School of Environmental Science and Engineering and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yuebing Wan
- School of Environmental Science and Engineering and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Xudong Wei
- School of Environmental Science and Engineering and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Agripolis Campus, Viale dell'Università, 16, 35020 Legnaro, PD, Italy
| | - Yongqi Zhang
- School of Environmental Science and Engineering and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Tangfu Xiao
- School of Environmental Science and Engineering and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Jin Wang
- School of Environmental Science and Engineering and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
5
|
Fang F, Liu S, Yuan W, Xiong X, Wang J, Qi J, Shi Y, Xu W, Liu J, Xiao T. Superior removal of Tl(I) from aqueous solution by facilely engineered MnxOy@potassium-rich biowaste-biochar. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|