1
|
Chen G, Ma J, Yang G, Chen C, Long L, Li L, Gong L, Xu M, Wu J, Song C, Lyu J. Biochar-derived dissolved organic matter enhanced the release of residual ciprofloxacin from the soil solid phase. CHEMOSPHERE 2024; 358:142193. [PMID: 38697562 DOI: 10.1016/j.chemosphere.2024.142193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 04/10/2024] [Accepted: 04/27/2024] [Indexed: 05/05/2024]
Abstract
Biochar has been utilized to reduce ciprofloxacin (CIP) residues in soil. However, little is known about the effect of biochar-derived dissolved organic matter (DOM) on residual CIP transformation. Thus, we analyzed the residual soil CIP as influenced by biochar generated from rice straw (RS3 and RS6), pig manure (PM3 and PM6), and cockroach shell (CS3 and CS6) at 300 °C and 600 °C. The three-dimensional excitation-emission matrix (3D-EEM), parallel factor analysis (PARAFAC) and two-dimensional correlation spectral analysis (2D-COS) were used to describe the potential variation in the DOM-CIP interaction. Compared with CK, biochar amendment increased the water-soluble CIP content by 160.7% (RS3), 55.2% (RS6), 534.1% (PM3), 277.5% (PM6), 1160.6% (CS3) and 703.9% (CS6), indicating that the biochar feedstock controlled the soil CIP release. The content of water-soluble CIP was positively correlated with the content of dissolved organic carbon (r = 0.922, p < 0.01) and dissolved organic nitrogen (r = 0.898, p < 0.01), suggesting that the major influence of the water-soluble CIP increase was DOM. The fluorescence quenching experiment showed that the interaction between DOM and CIP triggered static quenching and the creation of a DOM complex. The mean log K of protein-like material (4.977) was higher than that of terrestrial humus-like material (3.491), suggesting that the protein-like material complexed CIP was more stable than the humus-like material. Compared with pyrolysis at 300 °C, pyrolysis at 600 °C decreased the stability of the complex of protein-like material and CIP by 0.44 (RS), 1.689 (PM) and 0.548 (CS). This result suggested that the influence of temperature change was more profound on PM biochar-derived DOM than on RS and CS. These insights are essential for understanding CIP transportation in soil and controlling CIP contamination with biochar.
Collapse
Affiliation(s)
- Guo Chen
- College of Environmental Science, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jing Ma
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an, 625014, China
| | - Gang Yang
- College of Environmental Science, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chao Chen
- College of Environmental Science, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lulu Long
- College of Environmental Science, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linling Li
- Sichuan Keyuan Engineering Technology Testing Center, Chengdu, 610073, China
| | - Li Gong
- Sichuan Keyuan Engineering Technology Testing Center, Chengdu, 610073, China
| | - Min Xu
- College of Environmental Science, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Jun Wu
- College of Environmental Science, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Chun Song
- College of Environmental Science, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiejie Lyu
- College of History Culture and Tourism, Fuyang Normal University, 236041, China
| |
Collapse
|
2
|
Wang W, Nie M, Yan C, Yuan Y, Xu A, Ding M, Wang P, Ju M. Effect of pyrolysis temperature and molecular weight on characterization of biochar derived dissolved organic matter from invasive plant and binding behavior with the selected pharmaceuticals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123867. [PMID: 38556151 DOI: 10.1016/j.envpol.2024.123867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/20/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
A comprehensive understanding of the characteristics of biochar released-dissolved organic matter (BDOM) derived from an invasive plant and its impact on the binding behavior of pharmaceuticals is essential for the application of biochar, yet has received less attention. In this study, the binding behavior of BDOM pyrolyzed at 300-700 °C with sulfathiazole, acetaminophen, chloramphenicol (CAP), and carbamazepine (CMZ) was investigated based on a multi-analytical approach. Generally, the pyrolysis temperature exhibited a more significant impact on the spectral properties of BDOM and pharmaceutical binding behavior than those of the molecular weight. With increased pyrolysis temperature, the dissolved organic carbon decreased while the proportion of the protein-like substance increased. The highest binding capacity towards the drugs was observed for the BDOM pyrolyzed at 500 °C with the molecular weight larger than 0.3 kDa. Moreover, the protein-like substance exhibited higher susceptive and released preferentially during the dialysis process and also showed more sensitivity and bound precedingly with the pharmaceuticals. The active binding points were the aliphatic C-OH, amide II N-H, carboxyl CO, and phenolic-OH on the tryptophan-like substance. Furthermore, the binding affinity of the BDOM pyrolyzed at 500 °C was relatively high with the stability constant (logKM) of 4.51 ± 0.52.
Collapse
Affiliation(s)
- Wangyu Wang
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, China
| | - Minghua Nie
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, China
| | - Caixia Yan
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, China.
| | - Yulong Yuan
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, China
| | - Aoxue Xu
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, China
| | - Mingjun Ding
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, China
| | - Peng Wang
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, China
| | - Min Ju
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, China
| |
Collapse
|
3
|
Liu M, Tian H, Chen T, Sun J, Sun R, Kong Q, Zhao Z, Zhang S, Xu F. Spatiotemporal evolution of dissolved organic matter (DOM) and its response to environmental factors and human activities. PLoS One 2023; 18:e0292705. [PMID: 37819935 PMCID: PMC10566700 DOI: 10.1371/journal.pone.0292705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023] Open
Abstract
The South-to-North Water Diversion East Project (SNWDP-E) is an effective way to realize the optimal allocation of water resources in China. The North Dasha River (NDR) is the reverse recharge section that receives water from the Yufu River to the Wohushan Reservoir transfer project line in the SNWDP. However, the dissolved organic matter (DOM) evolution mechanism of seasonal water transfer projects on tributary waters has not been fully elucidated. In this paper, the NDR is the main object, and the changes in the composition and distribution of spectral characteristics during the winter water transfer period (WT) as well as during the summer non-water transfer period (NWT) are investigated by parallel factor analysis (PARAFAC). The results showed that the water connectivity caused by water transfer reduces the environmental heterogeneity of waters in the basin, as evidenced by the ammonia nitrogen (NH4+-N) and total phosphorus (TP) in the water body were significantly lower (p<0.05, p<0.01) during the water transfer period than the non-water transfer period. In addition, the fluorescence intensity of DOM was significantly lower in the WT than the NWT (p<0.05) and was mainly composed of humic substances generated from endogenous sources with high stability. While the NWT was disturbed by anthropogenic activities leading to significant differences in DOM composition in different functional areas. Based on the redundancy analysis (RDA) and multiple regression analysis, it was found that the evolution of the protein-like components is dominated by chemical oxygen demand (COD) and NH4+-N factors during the WT. While the NWT is mainly dominated by total nitrogen (TN) and TP factors for the evolution of the humic-like components. This study helps to elucidate the impact of water transfer projects on the trunk basin and contribute to the regulation and management of inter-basin water transfer projects.
Collapse
Affiliation(s)
- Mengyu Liu
- College of Geography and Environment, Shandong Normal University, Jinan, Shandong, PR China
| | - Haihan Tian
- College of Geography and Environment, Shandong Normal University, Jinan, Shandong, PR China
| | - Tao Chen
- The Natural Resources and Planning Bureau of Weishan, Jining, PR China
| | - Jingyao Sun
- The Natural Resources and Planning Bureau of Weishan, Jining, PR China
| | - Ruipeng Sun
- Shandong Provincial GEO-MINERAL Engineering Co., Ltd., Jinan, PR China
| | - Qiang Kong
- College of Geography and Environment, Shandong Normal University, Jinan, Shandong, PR China
- Dongying Institute, Shandong Normal University, Dongying, Shandong, PR China
| | - Zheng Zhao
- College of Geography and Environment, Shandong Normal University, Jinan, Shandong, PR China
| | - Siju Zhang
- College of Geography and Environment, Shandong Normal University, Jinan, Shandong, PR China
| | - Fei Xu
- College of Geography and Environment, Shandong Normal University, Jinan, Shandong, PR China
| |
Collapse
|