1
|
Cui S, Yang L, Lu H, Guo L, Wang Y, Lan J, Ren YX, Li YY. Elucidation of the stress mechanisms on activated sludge stability induced by yttrium oxide nanoparticles with cytotoxicity: Performance deterioration, biointerface variation and microbial response. BIORESOURCE TECHNOLOGY 2025; 422:132217. [PMID: 39952619 DOI: 10.1016/j.biortech.2025.132217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/04/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
As technoscience advances, widespread use of nanoparticles (NPs) has resulted in environmental risks. This study focuses on the potential stress of 0-200 mg/L yttrium oxide (Y2O3) NPs on the activated sludge stability. Y2O3 NPs progressively suppressed nitrification, caused significant NO2- accumulation (200 mg/L) and diminished activities of key functional enzymes. Deteriorated flocculation corroborates the Y2O3 NPs' destruction. Extracellular polymeric substances were lessened, yet amplified microbial metabolites prove the microbial counteraction coping with Y2O3 NPs' cytotoxicity. Plausible blockage of different protein channels contributed to the wane in biological nitrogen-removal capacity. Plus, 50 mg/L Y2O3 NPs stimulated the β-glucan production. When exceeding 100 mg/L, plentiful Y2O3 NPs aggregate on sludge-surface, which inhibits nutrients transfer and metabolism. Furthermore, ammonia-oxidizing bacteria shifted from Nitrosomonas to Nitrosospira with Y2O3 NPs increase. Reduction in Nitrospira, Saccharimonada-genera, and Microlunatus further corroborates the impairment of pollutants removal. PICRUSt2 prediction demonstrates Y2O3 NPs impedes nitrogen and glycolytic metabolic pathway.
Collapse
Affiliation(s)
- Shen Cui
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Lei Yang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Haoqi Lu
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Linkai Guo
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yuchao Wang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jun Lan
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yong-Xiang Ren
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| |
Collapse
|
2
|
Debroy A, Sinha AK, Maity C, Pulimi M, Peijnenburg WJGM, Mukherjee A. In-situ and ex-situ EPS-corona formation on ZnO QDs mitigates their environmental toxicity in the freshwater microalgae Chlorella sp. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137034. [PMID: 39752834 DOI: 10.1016/j.jhazmat.2024.137034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/02/2024] [Accepted: 12/27/2024] [Indexed: 03/12/2025]
Abstract
The current work seeks to understand how the interactions between ZnO QDs and extracellular polymeric substances (EPS) may vary based on the types of EPS (loosely and tightly bound) and modes of eco-corona formation (In-situ or ex-situ). In-situ eco-corona refers to formation of an EPS layer on the QDs during the interactions with the algae whereas the ex-situ condition refers to forming the layer before the interactions. ZnO QDs were added at 0.25, 0.5, and 1.0 mg/L concentrations for pristine, in-situ, and ex-situ corona treatments with the cells. Pristine ZnO QDs induced significant oxidative stress in algal cells, as evident from increased levels of reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD), and catalase activity. This decreased the photosynthetic efficiency and caused significant growth inhibition in algae. In contrast, both the in-situ and ex-situ corona treatments with loosely bound and tightly bound EPS reduced the oxidative stress, improved the photosynthetic efficiency, and diminished growth inhibition effects. This study asserts the importance of EPS in reducing the toxicity of ZnO QDs, while maintaining the fluorescence activity. This ensures the sustainable usage of the ZnO QDs without any harm to aquatic ecosystems.
Collapse
Affiliation(s)
- Abhrajit Debroy
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Abhinav Kumar Sinha
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Chandan Maity
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India; (Organic) Material Science and Engineering Lab, Department of Chemistry, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Mrudula Pulimi
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, Leiden 2300 RA, the Netherlands; National Institute of Public Health and the Environment, Centre for the Safety of Substances and Products, Bilthoven 3720 BA, the Netherlands
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
3
|
Hou R, Liu J, Yang P, Liu H, Yuan R, Ji Y, Zhao H, Chen Z, Zhou B, Chen H. Metabolomic reveals the responses of sludge properties and microbial communities to high nitrite stress in denitrifying phosphorus removal systems. ENVIRONMENTAL RESEARCH 2024; 252:118924. [PMID: 38631473 DOI: 10.1016/j.envres.2024.118924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/28/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
Nitrite, as an electron acceptor, plays a good role in denitrifying phosphorus removal (DPR); however, high nitrite concentration has adverse affects on sludge performance. We investigated the precise mechanisms of responses of sludge to high nitrite stress, including surface characteristics, intracellular and extracellular components, microbial and metabolic responses. When the nitrite stress reached 90 mg/L, the sludge settling performance was improved, but the activated sludge was aging. FTIR and XPS analysis revealed a significant increase in the hydrophobicity of the sludge, resulting in improve settling performance. However, the intracellular carbon sources synthesis was inhibited. In addition, the components in the tightly bound extracellular polymeric substances (TB-EPS) of sludge were significantly reduced and indicated the disturb of metabolism. Notably, Exiguobacterium emerged as a new genus when face high nitrite stress that could maintaining survival in hostile environments. Moreover, metabolomic analysis demonstrated strong biological response to nitrite stress further supported above results that include the inhibited of carbohydrate and amino acid metabolism. More importantly, some lipids (PS, PA, LysoPA, LysoPC and LysoPE) were significantly upregulated that related enhanced membrane lipid remodeling. The comprehensive analyses provide novel insights into the high nitrite stress responses mechanisms in activated sludge systems.
Collapse
Affiliation(s)
- Rongrong Hou
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jiandong Liu
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Peng Yang
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Haijun Liu
- School of Resources and Environment, Anqing Normal University, Anqing, China.
| | - Rongfang Yuan
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Ying Ji
- Bureau of Ecology and Environment of Beijing Miyun, Miyun, 101599, China
| | - Hongfei Zhao
- Bureau of Ecology and Environment of Beijing Miyun, Miyun, 101599, China
| | - Zhongbing Chen
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha Suchdol, 16500, Czech Republic
| | - Beihai Zhou
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Huilun Chen
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
4
|
Guo LK, Yang L, Cui S, Sun Z, Li XT, Wang YC, Li YC, Ren YX. Positive responses and mechanisms of nitrifying sludge to carbon quantum dots: reactor performance, microbial behavior, and antioxidant defense. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:91095-91107. [PMID: 37468779 DOI: 10.1007/s11356-023-28763-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 07/08/2023] [Indexed: 07/21/2023]
Abstract
Extensive application of carbon quantum dots (CQDs) enlarges its concentration in sewage treatment system. The response of nitrifying sludge to CQDs after long-term exposure was investigated. Results showed that CQD concentrations of 0-100 mg/L presented positive effect to enzymes involved in nitrification, accelerating NH4+-N degradation and NO2--N transformation. The oxidation rate of NO2--N was significantly improved from 3.14 to 7.91 mg/(L h) under the stress of 100 mg/L CQDs. Besides, CQDs stimulated the production of sludge biomass and kept the stability of sludge settleability. Additionally, CQDs were mainly captured by loosely bound extracellular polymeric substances, reducing aromatic-like protein. Microbes alleviated CQD stress by secreting tryptophan-like protein and polysaccharides. After few CQDs entered cells, intracellular antioxidant defense was activated. Total antioxidant capacity level was heightened at least 31%. The activities of superoxide dismutase and catalase were enhanced at relatively low and high CQD concentration levels. Hence, microbial metabolic pathways, microbial community, and nitrifying bacteria were not significantly affected by CQDs. The findings of this work provide new insight for understanding the environmental implication of CQDs in the biological treatment system.
Collapse
Affiliation(s)
- Lin-Kai Guo
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Lei Yang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Shen Cui
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhao Sun
- China Construction Third Bureau Group Co. LTD., Xi'an, 710065, China
| | - Xiao-Tong Li
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yu-Chao Wang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yu-Cai Li
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yong-Xiang Ren
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|