1
|
Zhang S, Gao S, Wang B, Ning Z, Meng L, Hu M, Che X, Jiao Z. Insight into VOCs source profiles by machine learning: Role of commonalities in synergistic pollution controls. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138222. [PMID: 40220392 DOI: 10.1016/j.jhazmat.2025.138222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 04/14/2025]
Abstract
Under the trend of low-carbon and cost-reduction, achieving efficient control requires identifying the commonalities in volatile organic compounds (VOCs) source profiles and implementing collaborative emissions reduction strategies. This study focuses on the analysis of common pollution characteristics in chemical industrial clusters, examining the emission behaviors of VOCs from nearly 200 emission outlets across 14 industries. A total of 593 VOCs were identified, including 488 new species. The highest concentration of newly discovered VOCs is 240 × 103 μg/m3, accounting for 91 %. The identical emission behavior of different components and isomers of industrial sources in several industries is revealed. The dominant species were redefined based on three dimensions. Using machine learning (ML), the maximum incremental reactivity (MIR) values of 488 VOCs were simulated, and based on the common characteristics of VOCs and photochemistry, VOC factor groups were identified that represent 75 %-80 % of the emission sources in the chemical industrial cluster. The average percentage of oxygenated volatile organic compounds (OVOCs) in this study was 28 % higher than in other studies. This study follows the trend of synergistic emission reduction, reduces the blindness of large-scale establishment and updating of source profiles, and provides an efficient control method of VOCs.
Collapse
Affiliation(s)
- Shuwei Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Song Gao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Bo Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Zhukai Ning
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Lingning Meng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ming Hu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; Shanghai Environmental Monitoring Center, Shanghai 200235, China
| | - Xiang Che
- Shanghai Environmental Monitoring Center, Shanghai 200235, China
| | - Zheng Jiao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
2
|
Mondal SK, Aina P, Rownaghi AA, Rezaei F. Cooperative and Bifunctional Adsorbent-Catalyst Materials for In-situ VOCs Capture-Conversion. Chempluschem 2024; 89:e202300419. [PMID: 38116915 DOI: 10.1002/cplu.202300419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
Volatile organic compounds (VOCs) are gases that are emitted into the air from products or processes and are major components of air pollution that significantly deteriorate air quality and seriously affect human health. Different types of metals, metal oxides, mixed-metal oxides, polymers, activated carbons, zeolites, metal-organic frameworks (MOFs) and mixed-matrixed materials have been developed and used as adsorbent or catalyst for diversified VOCs detection, removal, and destruction. In this comprehensive review, we first discuss the general classification of VOCs removal materials and processes and outline the historical development of bifunctional and cooperative adsorbent-catalyst materials for the removal of VOCs from air. Subsequently, particular attention is devoted to design of strategies for cooperative adsorbent-catalyst materials, along with detailed discussions on the latest advances on these bifunctional materials, reaction mechanisms, long-term stability, and regeneration for VOCs removal processes. Finally, challenges and future opportunities for the environmental implementation of these bifunctional materials are identified and outlined with the intent of providing insightful guidance on the design and fabrication of more efficient materials and systems for VOCs removal in the future.
Collapse
Affiliation(s)
- Sukanta K Mondal
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, MO 65409-1230, United States
| | - Peter Aina
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, MO 65409-1230, United States
- Department of Chemical, Environmental and Materials Engineering, University of Miami, Miami, FL 33124, United States
| | - Ali A Rownaghi
- National Energy Technology Laboratory, United States Department of Energy, Pittsburgh, PA 15236, United States
| | - Fateme Rezaei
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, MO 65409-1230, United States
- Department of Chemical, Environmental and Materials Engineering, University of Miami, Miami, FL 33124, United States
| |
Collapse
|
3
|
Ren Y, Guan X, Peng Y, Gong A, Xie H, Chen S, Zhang Q, Zhang X, Wang W, Wang Q. Characterization of VOC emissions and health risk assessment in the plastic manufacturing industry. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 357:120730. [PMID: 38574705 DOI: 10.1016/j.jenvman.2024.120730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/25/2024] [Accepted: 03/19/2024] [Indexed: 04/06/2024]
Abstract
Volatile organic compounds (VOCs) significantly contribute to ozone pollution formation, and many VOCs are known to be harmful to human health. Plastic has become an indispensable material in various industries and daily use scenarios, yet the VOC emissions and associated health risks in the plastic manufacturing industry have received limited attention. In this study, we conducted sampling in three typical plastic manufacturing factories to analyze the emission characteristics of VOCs, ozone formation potential (OFP), and health risks for workers. Isopropanol was detected at relatively high concentrations in all three factories, with concentrations in organized emissions reaching 322.3 μg/m3, 344.8 μg/m3, and 22.6 μg/m3, respectively. Alkanes are the most emitted category of VOCs in plastic factories. However, alkenes and oxygenated volatile organic compounds (OVOCs) exhibit higher OFP. In organized emissions of different types of VOCs in the three factories, alkenes and OVOCs contributed 22.8%, 67%, and 37.8% to the OFP, respectively, highlighting the necessity of controlling them. The hazard index (HI) for all three factories was less than 1, indicating a low non-carcinogenic toxic risk; however, there is still a possibility of non-cancerous health risks in two of the factories, and a potential lifetime cancer risk in all of the three factories. For workers with job tenures exceeding 5 years, there may be potential health risks, hence wearing masks with protective capabilities is necessary. This study provides evidence for reducing VOC emissions and improving management measures to ensure the health protection of workers in the plastic manufacturing industry.
Collapse
Affiliation(s)
- Yuchao Ren
- Big Data Research Center for Ecology and Environment, Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Xu Guan
- State Environmental Protection Key Laboratory of Land and Sea Ecological Governance and Systematic Regulation, Shandong Academy for Environmental Planning, Jinan 250101, PR China
| | - Yanbo Peng
- Big Data Research Center for Ecology and Environment, Environment Research Institute, Shandong University, Qingdao 266237, PR China; State Environmental Protection Key Laboratory of Land and Sea Ecological Governance and Systematic Regulation, Shandong Academy for Environmental Planning, Jinan 250101, PR China.
| | - Anbao Gong
- State Environmental Protection Key Laboratory of Land and Sea Ecological Governance and Systematic Regulation, Shandong Academy for Environmental Planning, Jinan 250101, PR China
| | - Huan Xie
- State Environmental Protection Key Laboratory of Land and Sea Ecological Governance and Systematic Regulation, Shandong Academy for Environmental Planning, Jinan 250101, PR China
| | - Shurui Chen
- State Environmental Protection Key Laboratory of Land and Sea Ecological Governance and Systematic Regulation, Shandong Academy for Environmental Planning, Jinan 250101, PR China
| | - Qingzhu Zhang
- Big Data Research Center for Ecology and Environment, Environment Research Institute, Shandong University, Qingdao 266237, PR China.
| | - Xin Zhang
- Big Data Research Center for Ecology and Environment, Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Wenxing Wang
- Big Data Research Center for Ecology and Environment, Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Qiao Wang
- Big Data Research Center for Ecology and Environment, Environment Research Institute, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
4
|
Wu W, Fu TM, Arnold SR, Spracklen DV, Zhang A, Tao W, Wang X, Hou Y, Mo J, Chen J, Li Y, Feng X, Lin H, Huang Z, Zheng J, Shen H, Zhu L, Wang C, Ye J, Yang X. Temperature-Dependent Evaporative Anthropogenic VOC Emissions Significantly Exacerbate Regional Ozone Pollution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5430-5441. [PMID: 38471097 DOI: 10.1021/acs.est.3c09122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
The evaporative emissions of anthropogenic volatile organic compounds (AVOCs) are sensitive to ambient temperature. This sensitivity forms an air pollution-meteorology connection that has not been assessed on a regional scale. We parametrized the temperature dependence of evaporative AVOC fluxes in a regional air quality model and evaluated the impacts on surface ozone in the Beijing-Tianjin-Hebei (BTH) area of China during the summer of 2017. The temperature dependency of AVOC emissions drove an enhanced simulated ozone-temperature sensitivity of 1.0 to 1.8 μg m-3 K-1, comparable to the simulated ozone-temperature sensitivity driven by the temperature dependency of biogenic VOC emissions (1.7 to 2.4 μg m-3 K-1). Ozone enhancements driven by temperature-induced AVOC increases were localized to their point of emission and were relatively more important in urban areas than in rural regions. The inclusion of the temperature-dependent AVOC emissions in our model improved the simulated ozone-temperature sensitivities on days of ozone exceedance. Our results demonstrated the importance of temperature-dependent AVOC emissions on surface ozone pollution and its heretofore unrepresented role in air pollution-meteorology interactions.
Collapse
Affiliation(s)
- Wenlu Wu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds LS2 9JT, U.K
| | - Tzung-May Fu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Steve R Arnold
- Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds LS2 9JT, U.K
| | - Dominick V Spracklen
- Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds LS2 9JT, U.K
| | - Aoxing Zhang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Wei Tao
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xiaolin Wang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Yue Hou
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jiajia Mo
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jiongkai Chen
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yumin Li
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xu Feng
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Haipeng Lin
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Zhijiong Huang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, Guangdong 511443, China
| | - Junyu Zheng
- Sustainable Energy and Environment Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong 511453, China
| | - Huizhong Shen
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Lei Zhu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Chen Wang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jianhuai Ye
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xin Yang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|