1
|
Cheng S, Jiang S, Xie S, Zhang B, Zhang H, Zhang J, Xie Z, Jiang W. A machine learning approach to predicting postoperative recurrence in pediatric chronic rhinosinusitis: identification of key metabolic biomarkers. Am J Otolaryngol 2025; 46:104676. [PMID: 40381603 DOI: 10.1016/j.amjoto.2025.104676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 05/09/2025] [Indexed: 05/20/2025]
Abstract
BACKGROUND Pediatric chronic rhinosinusitis (CRS) is a common chronic inflammatory disease with a high recurrence rate after surgery. This study aimed to construct and validate a machine learning-based predictive model to predict the risk of postoperative recurrence of pediatric CRS and to identify potential biomarkers. METHODS One hundred and fifteen pediatric patients who underwent functional endoscopic sinus surgery were included. The dataset was divided into training and testing sets (7:3 ratio). Demographic characteristics and laboratory data of were collected and used as features in the predictive models. Eight machine learning algorithms, including Random forest (RF), were applied to construct predictive models. Feature selection was performed, and hyperparameters were optimized using a grid search with 10-fold cross-validation. Model performance was assessed using the area under the receiver operating characteristic curve (AUC) and F1 score. RESULTS The Random Forest model performed best in predicting the postoperative recurrence of CRS in children, with AUC of 0.830. Feature selection analyses showed that metabolic markers, such as DBIL, Glu, and TBIL, had an important role in predicting CRS recurrence. In the test set, the AUC of the RF model reached 0.864 and an F1 score of 0.9, showing good stability and generalization ability. CONCLUSION In this study, we successfully constructed a model to predict the postoperative recurrence of pediatric CRS. The predictive model indicated that key metabolites were significantly associated with disease outcomes, and individualized management of postoperative pediatric CRS.
Collapse
Affiliation(s)
- Shenghao Cheng
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, Changsha, China; Hunan Province Key Laboratory of Otolaryngology Critical Diseases, Xiangya Hospital of Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China; Anatomy Laboratory of Division of Nose and Cranial Base, Clinical Anatomy Center of Xiangya Hospital, Central South University, Changsha, China
| | - Sijie Jiang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, Changsha, China; Hunan Province Key Laboratory of Otolaryngology Critical Diseases, Xiangya Hospital of Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China; Anatomy Laboratory of Division of Nose and Cranial Base, Clinical Anatomy Center of Xiangya Hospital, Central South University, Changsha, China
| | - Shaobing Xie
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, Changsha, China; Hunan Province Key Laboratory of Otolaryngology Critical Diseases, Xiangya Hospital of Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China; Anatomy Laboratory of Division of Nose and Cranial Base, Clinical Anatomy Center of Xiangya Hospital, Central South University, Changsha, China
| | - Benjian Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, Changsha, China; Hunan Province Key Laboratory of Otolaryngology Critical Diseases, Xiangya Hospital of Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China; Anatomy Laboratory of Division of Nose and Cranial Base, Clinical Anatomy Center of Xiangya Hospital, Central South University, Changsha, China
| | - Hua Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, Changsha, China; Hunan Province Key Laboratory of Otolaryngology Critical Diseases, Xiangya Hospital of Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China; Anatomy Laboratory of Division of Nose and Cranial Base, Clinical Anatomy Center of Xiangya Hospital, Central South University, Changsha, China
| | - Junyi Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, Changsha, China; Hunan Province Key Laboratory of Otolaryngology Critical Diseases, Xiangya Hospital of Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China; Anatomy Laboratory of Division of Nose and Cranial Base, Clinical Anatomy Center of Xiangya Hospital, Central South University, Changsha, China
| | - Zhihai Xie
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, Changsha, China; Hunan Province Key Laboratory of Otolaryngology Critical Diseases, Xiangya Hospital of Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China; Anatomy Laboratory of Division of Nose and Cranial Base, Clinical Anatomy Center of Xiangya Hospital, Central South University, Changsha, China
| | - Weihong Jiang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, Changsha, China; Hunan Province Key Laboratory of Otolaryngology Critical Diseases, Xiangya Hospital of Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China; Anatomy Laboratory of Division of Nose and Cranial Base, Clinical Anatomy Center of Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
2
|
Zhang J, Lu N, Hou S, Sun S, Jia R, Wu D. The acute toxicity of tripropyl phosphate and tributyl phosphate to Microcystis aeruginosa. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:118. [PMID: 40085181 DOI: 10.1007/s10653-025-02411-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/17/2025] [Indexed: 03/16/2025]
Abstract
The mass production and applications of tripropyl phosphate (TPrP) and tributyl phosphate (TBP) have facilitated their widespread distribution in aquatic environments, thereby posing a threat to the ecosystem. Here, the acute toxicity of TPrP and TBP to Microcystis aeruginosa and the underlying mechanisms were investigated. The results demonstrate that both TPrP and TBP can significantly inhibit the growth and reduce cell viability of M. aeruginosa with increasing concentrations and exposure time. Moreover, the treatment with TPrP and TBP result in a notable reduction in the content of chlorophyll a. The content of dissolved organic carbon (DOC) is down-regulated at lower concentrations, and shows a gradual increase with increasing concentrations of TPrP or TBP. Meanwhile, minor discrepancies have been observed in the proportions of DOC components through excitation-emission-matrix (EEM) spectra. The exposure of TPrP and TBP results in the production of excessive reactive oxygen species (ROS) and the increase of antioxidant enzymatic activities, including superoxide dismutase (SOD) and catalase (CAT). TPrP, but not TBP, has been demonstrated to enhance the MDA level, indicating a significant effect on membrane lipid peroxidation. The differences in the respective toxicity mechanisms and biological effects can be attributed to the alkyl chain lengths and physicochemical properties inherent to each compound. Consequently, the study not only offers insights into the acute effects of the two alkyl organophosphate esters on M. aeruginosa, but also provides a scientific basis and framework for assessing their ecological risk in aquatic environments.
Collapse
Affiliation(s)
- Jinfeng Zhang
- Shandong Provincial Water Supply and Drainage Monitoring Center, Middle Aoti Road, Jinan, 250100, China
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Fengming Road, Jinan, 250101, China
| | - Nannan Lu
- Shandong Provincial Water Supply and Drainage Monitoring Center, Middle Aoti Road, Jinan, 250100, China
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, China
| | - Shuguo Hou
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Fengming Road, Jinan, 250101, China
| | - Shaohua Sun
- Shandong Provincial Water Supply and Drainage Monitoring Center, Middle Aoti Road, Jinan, 250100, China
| | - Ruibao Jia
- Shandong Provincial Water Supply and Drainage Monitoring Center, Middle Aoti Road, Jinan, 250100, China.
| | - Daoji Wu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Fengming Road, Jinan, 250101, China
| |
Collapse
|
3
|
Huang Z, Chen Y, Zou J, Zhou P, Huang X, Zhuang R, Wang X, Liu L. Plant endophytic bacteria reduce phthalates accumulation in soil-crop-body system: a review. REVIEWS ON ENVIRONMENTAL HEALTH 2025:reveh-2024-0040. [PMID: 39899388 DOI: 10.1515/reveh-2024-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 01/08/2025] [Indexed: 02/05/2025]
Abstract
Phthalate esters (PAEs) represent a class of widely utilized plasticizers, resulting in their pervasive presence in soil and agricultural crops, which poses significant risks to human health. This review examines the current state of PAE pollution, the microbial resources available for PAE degradation, and the associated degradation pathways. It highlights the advantages of endophytic bacteria over environmental microorganisms, including the prolonged survival of inoculated strains, in vivo biodegradation of PAEs, and multifunctional capabilities. Furthermore, the mechanisms by which endophytic bacteria mitigate PAE accumulation across the three defense lines (soil, crops, and the human body) are elucidated. The integrated approach of employing both plants and microbial agents for the remediation of PAEs demonstrates considerable potential for ensuring the safety of agricultural products and safeguarding human health. This work offers new insights into addressing the challenges posed by organic pollutant contamination and reducing PAE accumulation in the human body.
Collapse
Affiliation(s)
- Ziyi Huang
- School of Life Sciences and Biopharmaceutics, 71237 Guangdong Pharmaceutical University , Guangzhou, China
| | - Yanli Chen
- School of Life Sciences and Biopharmaceutics, 71237 Guangdong Pharmaceutical University , Guangzhou, China
| | - Jieying Zou
- School of Life Sciences and Biopharmaceutics, 71237 Guangdong Pharmaceutical University , Guangzhou, China
| | - Peng Zhou
- Center for New Drug Research and Development, 71237 Guangdong Pharmaceutical University , Guangzhou, China
| | - Xingyu Huang
- School of Life Sciences and Biopharmaceutics, 71237 Guangdong Pharmaceutical University , Guangzhou, China
| | - Ruihao Zhuang
- School of Life Sciences and Biopharmaceutics, 71237 Guangdong Pharmaceutical University , Guangzhou, China
| | - Xinyu Wang
- School of Life Sciences and Biopharmaceutics, 71237 Guangdong Pharmaceutical University , Guangzhou, China
| | - Lihui Liu
- School of Life Sciences and Biopharmaceutics, 71237 Guangdong Pharmaceutical University , Guangzhou, China
| |
Collapse
|
4
|
Jaiswal R, Ahmad S, Pandey S, Ali A, Jaiswal R, Yadav R, Yadav R, Ahsan R, Dwivedi T. Innovative approaches to eczema treatment: A review of Fevipiprant and its potential as a new therapeutic agent. Prostaglandins Other Lipid Mediat 2025; 176:106946. [PMID: 39740738 DOI: 10.1016/j.prostaglandins.2024.106946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/16/2024] [Accepted: 12/27/2024] [Indexed: 01/02/2025]
Abstract
Eczema is also known as atopic dermatitis, which goes on to affect the skin as a chronic inflammatory disease. It is associated with a constant feeling of scratchiness, erthyma and disruption of the natural skin barrier. Treatment provided at present may improve some of the symptoms, for instance use of corticosteroids or immunosuppressive agents, however, there is an overwhelming need for better focused and effective methods of treatment with minimal adverse effects. Fevipiprant, a DP2 receptor antagonist, has emerged as a promising agent targeting prostaglandin D2 (PGD2) pathways, which play a crucial role in eczema pathophysiology. This review examines the mechanism of action, pharmacological profile of Fevipiprant and present studies on preclinical and clinical development of Fevipiprant for treatment of eczema. Additionally, we provide a comparison of Fevipiprant with existing treatment options and evaluate its safety and tolerability. The evaluation gives a reason that targeting in the treatment of eczema by the use of Fevipiprant is able to effectively target the DP2 pathway which is associated with a good safetyl however presenting itself as a new treatment option in the management of eczema. Finally, long-term studies are essential to validate the feasibility, safety, and effectiveness of Fevipiprant compared to existing therapies for eczema. Novartis has taken advantage of this stat for comp… given the scarcity of effective therapies for paediatric atopic dermatitis in Japan. Exploring Fevipiprant from the Efficacy Perspective is also required because it will impact how it will enter clinical practice in therapy of eczema in the future.
Collapse
Affiliation(s)
- Rahul Jaiswal
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, Uttar Pradesh 226026, India.
| | - Sageer Ahmad
- Sagar Institute of Technology And Management Department of Pharmacy, Barabanki, Uttar Pradesh, India
| | - Supriya Pandey
- Hygia Institute of Pharmaceutical Education and Research, Lucknow, Uttar Pradesh, India
| | - Asad Ali
- Hygia Institute of Pharmaceutical Education and Research, Lucknow, Uttar Pradesh, India
| | - Rupali Jaiswal
- Rajarshi Rananjay Sinh College of Pharmacy, Amethi, Uttar Pradesh 227405, India
| | - Reetu Yadav
- Hygia Institute of Pharmaceutical Education and Research, Lucknow, Uttar Pradesh, India
| | - Reema Yadav
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, Uttar Pradesh 226026, India
| | - Rabiya Ahsan
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, Uttar Pradesh 226026, India
| | - Tapasya Dwivedi
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, Uttar Pradesh 226026, India
| |
Collapse
|
5
|
Wang Y, Wang L, Jiang Z, Qu M, Meng Z, Sun Q, Du Y, Wang Y. Non-dietary exposure to phthalates in primary school children: Risk and correlation with anthropometric indices, cardiovascular and respiratory diseases. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117203. [PMID: 39423508 DOI: 10.1016/j.ecoenv.2024.117203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
Phthalates are endocrine disruptors of increasing concern for human health; however, previous studies have only assessed the association between internal exposure and human health. We aimed to assess the non-carcinogenic and carcinogenic risks of non-dietary exposure to phthalates in indoor environments among primary school children and their correlations with health indicators. A study involving 54 children was conducted in Jinan, Shandong Province, China. Questionnaires and health examinations were conducted, dust in hard-to-clean corners of students' classrooms and homes was collected, and airborne phthalates in the middle of classrooms and family living rooms were sampled. The gas-phase phthalate concentrations, individual exposure, and non-carcinogenic and carcinogenic risks were calculated. Associations were estimated using linear mixed models. The findings revealed that phthalates posed a non-carcinogenic risk to 7.4 % of the children and a moderate carcinogenic risk to 27.8 % of the children, with higher non-carcinogenic and carcinogenic risks to girls than to boys. Five phthalates were negatively correlated with body mass index, dimethyl phthalate and diethyl phthalate (DEP) were significantly correlated with waist circumference, and di-iso-butyl phthalate (DiBP) was negatively correlated with hip circumference. DiBP, di-n-butyl phthalate, and DEP, were significantly correlated with cardiovascular disease, DEP and di (2-n-butoxyethyl) phthalate were correlated with decreased lung function, and di-n-octyl phthalate influenced airway inflammation. The findings indicated that phthalate exposure may negatively impact children's health, thereby warranting further comprehensive research on the health effects of these chemicals.
Collapse
Affiliation(s)
- Yuchen Wang
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Lixin Wang
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| | - Zhiyu Jiang
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Meinan Qu
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Ziyan Meng
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Qinghua Sun
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yanjun Du
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yanwen Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
6
|
Yang Y, Zhang C, Gao H. Potential mechanisms and modifications of dietary antioxidants on the associations between co-exposure to plastic additives and diabetes. Nutr Diabetes 2024; 14:72. [PMID: 39227562 PMCID: PMC11372220 DOI: 10.1038/s41387-024-00330-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND The association of plastic additive mixture exposure with diabetes and the modifying effects of dietary antioxidants are unclear. METHODS The data from the NHANES 2011-2018 were retrieved, and phthalates and organophosphate esters (OPEs) were selected as exposures. The coexposure effect was analyzed by the environmental risk score (ERS) and quantile g-computation. To mitigate any potential bias caused by using the internal weights, another version of ERS was constructed using the cross-validation approach. The level of dietary antioxidant intake was measured by the composite dietary antioxidant index (CDAI). The biological mechanism underlying the association was studied by the adverse outcome pathway (AOP) framework. RESULTS Fifteen chemicals (ten phthalates and five OPEs) were measured in 2824 adult participants. A higher ERS was significantly associated with an increased risk of diabetes (OR per 1-SD increment of ERS: 1.25, 95% CI: 1.13-1.39). This association apparently interacted with the CDAI level (ORlow: 1.83, 95% CI: 1.37-2.55; ORhigh: 1.28, 95% CI: 1.15-1.45; Pinteraction = 0.038). Moreover, quantile g-computation also revealed higher level of combined exposure was positively associated with diabetes (OR: 1.27, 95% CI: 1.05-2.87), and the addition of dietary antioxidants showed a null association (OR: 1.09, 95% CI: 0.85-2.34). The AOP study identified TCPP and TCEP as key chemicals that cause aberrant glucose metabolism and insulin signaling pathways and result in diabetes. CONCLUSIONS Coexposure to phthalates and OPEs is positively associated with diabetes, where an antioxidative diet plays a modifying role. Several potential mechanisms have been proposed by AOP framework.
Collapse
Affiliation(s)
- Yang Yang
- Department of Prevention and Health Care, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, Zhejiang, China
| | - Cheng Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, Anhui, China
- Department of Biostatistics, Anhui Provincial Cancer Institute, No.218 Jixi Road, Hefei, 230022, Anhui, China
| | - Hui Gao
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, Anhui, China.
| |
Collapse
|
7
|
Giles BH, Kukolj N, Mann KK, Robaire B. Phenotypic and Functional Outcomes in Macrophages Exposed to an Environmentally Relevant Mixture of Organophosphate Esters in Vitro. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:87002. [PMID: 39115886 PMCID: PMC11309092 DOI: 10.1289/ehp13869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Organophosphate esters (OPEs) are flame retardants and plasticizers used in consumer products. OPEs are found ubiquitously throughout the environment with high concentrations in indoor house dust. Exposure to individual OPEs is associated with immune dysfunction, particularly in macrophages. However, OPEs exist as complex mixtures and the effects of environmentally relevant mixtures on the immune system have not been investigated. OBJECTIVES The objectives of this study were to evaluate the toxicity of an environmentally relevant mixture of OPEs that models Canadian house dust on macrophages using phenotypic and functional assessments in vitro. METHODS High-content live-cell fluorescent imaging for phenotypic biomarkers of toxicity in THP-1 macrophages treated with the OPE mixture was undertaken. We used confocal microscopy and cholesterol analysis to validate and expand on the observed OPE-induced lipid phenotype. Then, we used flow cytometry and live-cell imaging to conduct functional tests and uncover mechanisms of OPE-induced phagocytic suppression. Finally, we validated our THP-1 findings in human primary peripheral blood mononuclear cells (hPBMC) derived macrophages. RESULTS Exposure to non-cytotoxic dilutions of the OPE mixture resulted in higher oxidative stress and disrupted lysosome and lipid homeostasis in THP-1 and primary macrophages. We further observed that phagocytosis of apoptotic cells in THP-1 and primary macrophages was lower in OPE-exposed cells vs. controls. In THP-1 macrophages, phagocytosis of both Gram-positive and Gram-negative bacteria was also lower in OPE-exposed cells vs. controls. Additionally, the OPE mixture altered the expression of phagocytic receptors linked to the recognition of phosphatidylserine and pathogen-associated molecular patterns. DISCUSSION The results of this in vitro study suggested that exposure to an environmentally relevant mixture of OPEs resulted in higher lipid retention in macrophages and poor efferocytic response. These effects could translate to enhanced foam cell generation resulting in higher cardiovascular mortality. Furthermore, bacterial phagocytosis was lower in OPE-exposed macrophages in an in vitro setting, which may indicate the potential for reduced bacterial clearance in models of infections. Taken together, our data provide strong evidence that mixtures of OPEs can influence the biology of macrophages and offer new mechanistic insights into the impact of OPE mixtures on the immune system. https://doi.org/10.1289/EHP13869.
Collapse
Affiliation(s)
- Braeden H. Giles
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute for Medical Research, McGill University, Montreal, Quebec, Canada
| | - Nikola Kukolj
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute for Medical Research, McGill University, Montreal, Quebec, Canada
| | - Koren K. Mann
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute for Medical Research, McGill University, Montreal, Quebec, Canada
| | - Bernard Robaire
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada
- Department of Obstetrics and Gynecology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
8
|
Prabhu K, Ghosh S, Sethulekshmi S, Shriwastav A. In vitro digestion of microplastics in human digestive system: Insights into particle morphological changes and chemical leaching. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173173. [PMID: 38740201 DOI: 10.1016/j.scitotenv.2024.173173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/18/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Despite the well-reported occurrences and established pathways for microplastics (MPs) ingestion by humans, the eventual fate of these particles in the human gastrointestinal system is poorly understood. The present study tries to gain a better understanding of the fate of four common food-borne MPs, i.e. Polystyrene (PS), Polypropylene (PP), Low-density Polyethylene (LDPE), and Nylon, in a simulated in vitro human digestive system. Firstly, the changes in the physicochemical properties of 20-210 μm sized MPs as well as the leaching of chemicals were monitored using fluorescence microscopy, FTIR, and LC-QTOF-MS. Thereafter, the mass loss and morphological alterations in 3-4 mm sized MPs were observed after removing the organic matter. The interaction of PS and PP MPs with duodenal and bile juices manifested in a corona formation. The increase in surface roughness in PP MPs aligned with MP-enzyme dehydrogenation reactions and the addition of NO groups. A few fragments ranging from 30 to 250 μm, with negligible mass loss, were released during the MP digestion process. In addition, the leaching of compounds, e.g. capsi-amide, butanamide, and other plasticizers and monomers was also observed from MPs during digestion, and which may have the potential to accumulate and get absorbed by the digestive organs, and to subsequently impart toxic effects.
Collapse
Affiliation(s)
- Keerthana Prabhu
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai 400 076, India
| | - Sayanti Ghosh
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai 400 076, India
| | - S Sethulekshmi
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai 400 076, India
| | - Amritanshu Shriwastav
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai 400 076, India.
| |
Collapse
|
9
|
Coelho SD, Maricoto T, Taborda-Barata L, Annesi-Maesano I, Isobe T, Sousa ACA. Relationship between flame retardants and respiratory health- A systematic review and meta-analysis of observational studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123733. [PMID: 38458527 DOI: 10.1016/j.envpol.2024.123733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Chronic respiratory diseases are a dealing cause of death and disability worldwide. Their prevalence is steadily increasing and the exposure to environmental contaminants, including Flame Retardants (FRs), is being considered as a possible risk factor. Despite the widespread and continuous exposure to FRs, the role of these contaminants in chronic respiratory diseases is yet not clear. This study aims to systematically review the association between the exposure to FRs and chronic respiratory diseases. Searches were performed using the Cochrane Library, MEDLINE, EMBASE, PUBMED, SCOPUS, ISI Web of Science (Science and Social Science Index), WHO Global Health Library and CINAHL EBSCO. Among the initial 353 articles found, only 9 fulfilled the inclusion criteria and were included. No statistically significant increase in the risk for chronic respiratory diseases with exposure to FRs was found and therefore there is not enough evidence to support that FRs pose a significantly higher risk for the development or worsening of respiratory diseases. However, a non-significant trend for potential hazard was found for asthma and rhinitis/rhinoconjunctivitis, particularly considering urinary organophosphate esters (OPEs) including TNBP, TPHP, TCEP and TCIPP congeners/compounds. Most studies showed a predominance of moderate risk of bias, therefore the global strength of the evidence is low. The limitations of the studies here reviewed, and the potential hazardous effects herein identified highlights the need for good quality large-scale cohort studies in which biomarkers of exposure should be quantified in biological samples.
Collapse
Affiliation(s)
- Sónia D Coelho
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Portugal
| | - Tiago Maricoto
- Beira Ria Health Unit, Aveiro Health Center, Ílhavo, Portugal; GRUBI - Systematic Reviews Group, Faculty of Health Sciences & UBIAir - Clinical & Experimental Lung Centre, CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.
| | - Luís Taborda-Barata
- GRUBI - Systematic Reviews Group, Faculty of Health Sciences & UBIAir - Clinical & Experimental Lung Centre, CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal; Department of Immunoallergology, Cova da Beira University Hospital Center, Covilhã, Portugal
| | - Isabella Annesi-Maesano
- Institute Desbrest of Epidemiology and Public Health, INSERM and Montpellier University, Department of Allergology and Respiratory Medicine, Montpellier University Hospital, Montpellier, France
| | - Tomohiko Isobe
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, Japan
| | - Ana C A Sousa
- Comprehensive Health Research Centre (CHRC) and Department of Biology, School of Science and Technology, University of Évora, Portugal
| |
Collapse
|
10
|
Liu C, Zhang Z, Li B, Huang K, Zhang Y, Li M, Letcher RJ. Lipid Metabolic Disorders Induced by Organophosphate Esters in Silver Carp from the Middle Reaches of the Yangtze River. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4904-4913. [PMID: 38437168 DOI: 10.1021/acs.est.3c08610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
The Yangtze River fishery resources have declined strongly over the past few decades. One suspected reason for the decline in fishery productivity, including silver carp (Hypophthalmichthys molitrix), has been linked to organophosphate esters (OPEs) contaminant exposure. In this study, the adverse effect of OPEs on lipid metabolism in silver carp captured from the Yangtze River was examined, and our results indicated that muscle concentrations of the OPEs were positively associated with serum cholesterol and total lipid levels. In vivo laboratory results revealed that exposure to environmental concentrations of OPEs significantly increased the concentrations of triglyceride, cholesterol, and total lipid levels. Lipidome analysis further confirmed the lipid metabolism dysfunction induced by OPEs, and glycerophospholipids and sphingolipids were the most affected lipids. Hepatic transcriptomic analysis found that OPEs caused significant alterations in the transcription of genes involved in lipid metabolism. Pathways associated with lipid homeostasis, including the peroxisome proliferator-activated receptor (PPAR) signal pathway, cholesterol metabolism, fatty acid biosynthesis, and steroid biosynthesis, were significantly changed. Furthermore, the affinities of OPEs were different, but the 11 OPEs tested could bind with PPARγ, suggesting that OPEs could disrupt lipid metabolism by interacting with PPARγ. Overall, this study highlighted the harmful effects of OPEs on wild fish and provided mechanistic insights into OPE-induced metabolic disorders.
Collapse
Affiliation(s)
- Chunsheng Liu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Zihan Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Boqun Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Kai Huang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Yongkang Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Meng Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Robert J Letcher
- Departments of Chemistry and Biology, Carleton University, Ottawa K1S 5B6 Ontario, Canada
| |
Collapse
|