1
|
Zhang S, Fu T, Tang J, Liu D, Zheng X, Shangguan H, Lin H, Yu Z, Zeng RJ. The activation of Parageobacillus toebii in hyperthermophilic composting was depended on the bioavailability of raw materials. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123611. [PMID: 39642825 DOI: 10.1016/j.jenvman.2024.123611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/21/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Hyperthermophilic composting (HTC) with excellent disposal effect is a novel composting technology by inoculating exogenous thermophilic microorganisms. However, the role of exogenous thermophilic microorganisms in HTC remains debated, especially for the applicability of different compost feedstocks. In this study, the role of Parageobacillus toebii during HTC using chicken and pig manure was investigated. The addition of P. toebii could raise the maximum temperature to 78.2 °C and obviously enhanced maturation effect in chicken manure composting. However, the enhancement effect of P. toebii was weaker in pig manure compost, and the maximum temperature only reached 73 °C. Addition of P. toebii could stimulated functional microbial communities for C&N transformation, increased temperature, and promoted the growth of thermophilic microorganisms in chicken manure composting. Component analyses showed that chicken manure had higher bioavailability compared to pig manure. Correlation analysis indicated that P. toebii activated as a "leader", stimulating metabolic activity among functional microbial communities and enhancing organic matter degradation for heat release, while its activation depended on the bioavailability of the raw material. This study provides important insights into the role and application of exogenous microorganisms in promoting HTC.
Collapse
Affiliation(s)
- Shuqun Zhang
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan, 354300, China; Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Tao Fu
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Jiahuan Tang
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan, 354300, China.
| | - Dandan Liu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xincheng Zheng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huayuan Shangguan
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan, 354300, China; Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Hao Lin
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan, 354300, China
| | - Zhen Yu
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China.
| | - Raymond Jianxiong Zeng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
2
|
Zhang R, Zhang Y, Xi Y, Zhou J, Han T, Ma Q, Wang C, Zhu F, Ye X. Effect of black soldier fly larvae frass addition on humus content during low temperature co-composting. BIORESOURCE TECHNOLOGY 2024; 412:131379. [PMID: 39214182 DOI: 10.1016/j.biortech.2024.131379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Initiating aerobic fermentation under low temperature is the main challenge for winter livestock manure composting. This study aims to address this issue by applying black soldier fly larvae (BSFL) frass as a co-composting additive to enhance the low-temperature composting process. Specifically, this work explored the effects of chicken manure and BSFL frass co-composting on the temperature, humus content, and microorganisms with fresh weight ratio of 2:1, 1:1, 1:2 (w/w) at 6 °C. The result showed frass could rapidly rise the temperature to 50 °C and significantly increased the humus content by 15.6 % ∼ 26.3 %. Moreover, microbial analysis revealed that Sphingobacteriaceae accelerated temperature rise via low-temperature reproduction, creating proper temperature for thermophilic bacteria (Truepera and Georgia). Additionally, Cellulomonas and other bacteria promoted organic matter degradation and participated in humus formation. This study presents a novel solution for low-temperature composting, providing practical insights for improving manure management in winter.
Collapse
Affiliation(s)
- Ruju Zhang
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Yingpeng Zhang
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Yonglan Xi
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Jin Zhou
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Ting Han
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Qiuqin Ma
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Cong Wang
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Fei Zhu
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Xiaomei Ye
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China.
| |
Collapse
|
3
|
Zhang Z, Gu Y, Wang S, Zhen Y, Chen Y, Wang Y, Mao Y, Meng J, Duan Z, Xu J, Wang M. Effective microorganism combinations improve the quality of compost-bedded pack products in heifer barns: exploring pack bacteria-fungi interaction mechanisms. BMC Microbiol 2024; 24:302. [PMID: 39134973 PMCID: PMC11321024 DOI: 10.1186/s12866-024-03447-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Compost-bedded pack barns (CBP) are getting huge attention as an alternative housing system for dairy cows due to their beneficial impact on animal welfare. Effective microorganisms (EM) inoculums are believed to enhance compost quality, improve soil structure and benefit the environment. However, little information is available on the impact of incubation with external EM combinations on the barn environment, compost quality and microbial diversity in CBP. This experiment was carried out to investigate the effect of inoculating different combinations of EM [Lactobacillus plantarum (L), Compound Bacillus (B) and Saccharomyces cerevisiae (S)] on compost quality and microbial communities of CBP products, as well as the relationship with the heifers' barn environment. CBP barns were subjected to the following four treatments: CON with no EM inoculum, LB/LS/LBS were Incubated with weight ratios of 1:2 (L: B), 1:2 (L: S), 1:1:1 (L: B: S), respectively. RESULTS The EM inoculation (LB, LS, LBS) reduced the concentration of respirable particulate matter (PM10 and PM2.5) in the CBP, and decreased the serum total protein and total cholesterol levels in heifers. Notably, LBS achieved the highest content of high-density lipoprotein compared to other treatments. Microbiome results revealed that EM inoculation reduced the bacterial abundance (Chao1 index) and fungal diversity (Shannon & Simpson indexes), while increasing the relative abundance of various bacterial genera (Pseudomonas, Paracoccus, Aequorivita) and fungi (Pestalotiopsis), which are associated with cellulose decomposition that ultimately resulted in accelerating organic matter degradation and humification. Furthermore, high nutrient elements (TK&TP) and low mycotoxin content were obtained with EM inoculation, with LBS showing a particularly pronounced effect. Meanwhile, LBS contributed to a decline in the proportion of fungal pathogen categories but also led to an increase in fungal saprotroph categories. CONCLUSION Generally, EM inoculation positively impacted compost product quality as organic fertilizer and barn environment by modifying the abundance of cellulolytic bacteria and fungi, while inhibiting the reproduction of pathogenic microbes, especially co-supplementing with L, B and S achieved an amplifying effect.
Collapse
Affiliation(s)
- Zhenbin Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, 832000, Xinjiang, China
| | - Yalan Gu
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Shanghai Frontan Animal Health Co., Ltd, Shanghai, 201502, China
| | - Shan Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yongkang Zhen
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yifei Chen
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yongkuan Wang
- Edweigang Modern Animal Husbandry Co., Ltd, Suqian, 223999, Jiangsu, China
| | - Yongjiang Mao
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jimeng Meng
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, 832000, Xinjiang, China
| | - Zhenyu Duan
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, 832000, Xinjiang, China.
| | - Jun Xu
- Institute for Quality and Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, 330299, Jiangxi, China.
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
4
|
Wang SP, Sun ZY, An MZ, Wang TT, Xia ZY, Tang YQ. Continuous thermophilic composting of distilled grain waste improved organic matter stability and succession of bacterial community. BIORESOURCE TECHNOLOGY 2024; 394:130307. [PMID: 38199442 DOI: 10.1016/j.biortech.2024.130307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/26/2023] [Accepted: 01/06/2024] [Indexed: 01/12/2024]
Abstract
Continuous thermophilic composting (CTC) is potentially helpful in shortening the composting cycle. However, its universal effectiveness and the microbiological mechanisms involved are unclear. Here, the physicochemical properties and bacterial community dynamics during composting of distilled grain waste in conventional and CTC models were compared. CTC accelerated the organic matter degradation rate (0.2 vs. 0.1 d-1) and shortened the composting cycle (24 vs. 65 d), mainly driven by the synergism of bacterial genera. Microbial analysis revealed that the abundance of Firmicutes was remarkably improved compared to that in conventional composting, and Firmicutes became the primary bacterial phylum (relative abundance >70 %) during the entire CTC process. Moreover, correlation analysis demonstrated that bacterial composition had a remarkable effect on the seed germination index. Therefore, controlling the composting process under continuous thermophilic conditions is beneficial for enhancing composting efficiency and strengthening the cooperation between bacterial genera.
Collapse
Affiliation(s)
- Shi-Peng Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Zhao-Yong Sun
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| | - Ming-Zhe An
- Key Laboratory of Wuliangye-flavor Liquor Solid-state Fermentation, China National Light Industry, Yibin 644007, China
| | - Ting-Ting Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Zi-Yuan Xia
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| |
Collapse
|