1
|
Mitchell L, Wilson L, Duthie G, Pumpa K, Weakley J, Scott C, Slater G. Methods to Assess Energy Expenditure of Resistance Exercise: A Systematic Scoping Review. Sports Med 2024; 54:2357-2372. [PMID: 38896201 PMCID: PMC11393209 DOI: 10.1007/s40279-024-02047-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Nutrition guidance for athletes must consider a range of variables to effectively support individuals in meeting energy and nutrient needs. Resistance exercise is a widely adopted training method in athlete preparation and rehabilitation and therefore is one such variable that will influence nutrition guidance. Given its prominence, the capacity to meaningfully quantify resistance exercise energy expenditure will assist practitioners and researchers in providing nutrition guidance. However, the significant contribution of anaerobic metabolism makes quantifying energy expenditure of resistance exercise challenging. OBJECTIVE The aim of this scoping review was to investigate the methods used to assess resistance exercise energy expenditure. METHODS A literature search of Medline, SPORTDiscus, CINAHL and Web of Science identified studies that included an assessment of resistance exercise energy expenditure. Quality appraisal of included studies was performed using the Rosendal Scale. RESULTS A total of 19,867 studies were identified, with 166 included after screening. Methods to assess energy expenditure included indirect calorimetry (n = 136), blood lactate analysis (n = 25), wearable monitors (n = 31) and metabolic equivalents (n = 4). Post-exercise energy expenditure was measured in 76 studies. The reported energy expenditure values varied widely between studies. CONCLUSIONS Indirect calorimetry is widely used to estimate energy expenditure. However, given its limitations in quantifying glycolytic contribution, indirect calorimetry during and immediately following exercise combined with measures of blood lactate are likely required to better quantify total energy expenditure. Due to the cumbersome equipment and technical expertise required, though, along with the physical restrictions the equipment places on participants performing particular resistance exercises, indirect calorimetry is likely impractical for use outside of the laboratory setting, where metabolic equivalents may be a more appropriate method.
Collapse
Affiliation(s)
- Lachlan Mitchell
- School of Behavioural and Health Sciences, Australian Catholic University, North Sydney, Australia.
| | - Luke Wilson
- School of Behavioural and Health Sciences, Australian Catholic University, North Sydney, Australia
| | - Grant Duthie
- School of Behavioural and Health Sciences, Australian Catholic University, Strathfield, Australia
- Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, Australian Catholic University, Melbourne, Australia
| | - Kate Pumpa
- Research Institute for Sport and Exercise, University of Canberra, Canberra, Australia
- School of Public Health, Physiotherapy and Sport Science, University College Dublin, Dublin, Ireland
| | - Jonathon Weakley
- Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, Australian Catholic University, Melbourne, Australia
- School of Behavioural and Health Sciences, Australian Catholic University, Brisbane, Australia
- Carnegie Applied Rugby Research (CARR) Centre, Carnegie School of Sport, Leeds Beckett University, Leeds, UK
| | - Christopher Scott
- Department of Exercise, Health, and Sport Sciences, University of Southern Maine, Maine, USA
| | - Gary Slater
- School of Health, University of the Sunshine Coast, Sippy Downs, Australia
| |
Collapse
|
2
|
Enes A, Alves RC, Zen V, Leonel DF, Oneda G, Ferreira LHB, Guiraldelli LR, Simao R, Escalante G, Ulbrich AZ, Souzajunior TP. Effects of Resistance Training Techniques on Metabolic Responses in Trained Males. INTERNATIONAL JOURNAL OF EXERCISE SCIENCE 2024; 17:576-589. [PMID: 38860033 PMCID: PMC11164431 DOI: 10.70252/jybg8718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
This study investigated the effects of biset, drop-set and traditional resistance training (RT) techniques on metabolic responses in resistance-trained males. Fifteen trained males (age 29.7 ± 6.1 years; body mass 83.4 ± 7.6 kg; RT experience 11.4 ± 6.7 years; one-repetition maximum (1RM) barbell bench press: body mass ratio 1.4 ± 0.1 a.u.) were assigned to three experimental conditions, in a randomized crossover design. The experimental conditions were bi-set (3×10 repetitions at 70%1RM in barbell bench press followed by 10 repetitions at 60%1RM in incline bench press), drop-set (3×10 repetitions at 70%1RM followed by 10 repetitions at 50%1RM in barbell bench press) and traditional RT (3×20 at 60%1RM in barbell bench press). A portable gas analyzer was used to assess energy expenditure and maximal oxygen uptake during the experimental protocols. Blood lactate levels were assessed at baseline and 1, 3, and 5 minutes after the training session. There were no differences for total training volume (p = 0.999). Post hoc comparisons revealed that bi-set elicited higher aerobic energy expenditure (p = 0.003 vs. drop-set; p < 0.001 vs. traditional RT) and aerobic oxygen consumption (p = 0.034 vs. drop-set; p < 0.001 vs. traditional RT) than other RT schemes. There were no differences regarding anaerobic EE between-conditions (p > 0.05). There was a main effect of time and condition for blood lactate levels (p < 0.001). Post hoc comparisons revealed that drop-set training elicited higher blood lactate levels than traditional RT (p = 0.009). The results suggest that RT techniques may have a potential role in optimizing metabolic responses in resistance-trained males.
Collapse
Affiliation(s)
- Alysson Enes
- Metabolism, Nutrition and Strength Training Research Group (GPMENUTF), Department of Physical Education, Federal University of Parana (UFPR), Curitiba, PR, BRAZIL
| | - Ragami C Alves
- Metabolism, Nutrition and Strength Training Research Group (GPMENUTF), Department of Physical Education, Federal University of Parana (UFPR), Curitiba, PR, BRAZIL
| | - Vinicius Zen
- Metabolism, Nutrition and Strength Training Research Group (GPMENUTF), Department of Physical Education, Federal University of Parana (UFPR), Curitiba, PR, BRAZIL
| | - Danilo Fonseca Leonel
- Athletics and Endurance Runners Research Group (PACE), Department of Physical Education, Federal University of Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina, MG, BRAZIL
| | - Gustavo Oneda
- Sports Center, Department of Physical Education, Federal University of Santa Catarina (UFSC), Florianopolis, SC, BRAZIL
| | - Luis H B Ferreira
- Metabolism, Nutrition and Strength Training Research Group (GPMENUTF), Department of Physical Education, Federal University of Parana (UFPR), Curitiba, PR, BRAZIL
| | - Luciano R Guiraldelli
- Department of Integrative Medicine, Center for Health Sciences, Federal University of Parana (UFPR), Curitiba, PR, BRAZIL
| | - Roberto Simao
- School of Physical Education and Sports, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, BRAZIL
| | - Guillermo Escalante
- Department of Kinesiology, California State University (CSU), San Bernardino, CA, USA
| | - Anderson Z Ulbrich
- Department of Integrative Medicine, Center for Health Sciences, Federal University of Parana (UFPR), Curitiba, PR, BRAZIL
| | - Tacito P Souzajunior
- Metabolism, Nutrition and Strength Training Research Group (GPMENUTF), Department of Physical Education, Federal University of Parana (UFPR), Curitiba, PR, BRAZIL
| |
Collapse
|
3
|
del-Cuerpo I, Jerez-Mayorga D, Chirosa-Ríos LJ, Morenas-Aguilar MD, Mariscal-Arcas M, López-Moro A, Delgado-Floody P. Males Have a Higher Energy Expenditure than Females during Squat Training. Nutrients 2023; 15:3455. [PMID: 37571392 PMCID: PMC10421381 DOI: 10.3390/nu15153455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
The main objective of this study was to determine the differences in energy expenditure (EE) according to sex during and after two different squat training protocols in a group of healthy young adults. Twenty-nine Sports Sciences students volunteered to participate in this study. They attended the laboratory on four different days and completed four sessions: two sessions with 3 sets of 12 repetitions at 75% of their one-repetition maximum (RM) and two sessions with 3 sets of 30 repetitions at 50% of their 1RM. Energy expenditure was evaluated using an indirect calorimeter. Males consistently demonstrated higher EE in all sessions and intensities. The linear regression model identified a significant association between sex, BMI, and total EE across all sessions and intensities. In conclusion, males exhibited higher EE in both protocols (50% and 75% of 1RM) throughout all sessions. Furthermore, sex and BMI were found to influence EE in healthy young adults. Therefore, coaches should consider sex when assessing EE, as the metabolic response differs between males and females.
Collapse
Affiliation(s)
- Indya del-Cuerpo
- Department of Physical Education and Sports, Faculty of Sports Sciences, University of Granada, 18071 Granada, Spain; (I.d.-C.); (D.J.-M.); (L.J.C.-R.); (M.D.M.-A.)
- Strength & Conditioning Laboratory, CTS-642 Research Group, Department Physical Education and Sports, Faculty of Sports Sciences, University of Granada, 18071 Granada, Spain
| | - Daniel Jerez-Mayorga
- Department of Physical Education and Sports, Faculty of Sports Sciences, University of Granada, 18071 Granada, Spain; (I.d.-C.); (D.J.-M.); (L.J.C.-R.); (M.D.M.-A.)
- Strength & Conditioning Laboratory, CTS-642 Research Group, Department Physical Education and Sports, Faculty of Sports Sciences, University of Granada, 18071 Granada, Spain
- Exercise and Rehabilitation Sciences Institute, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, Santiago 7591538, Chile
| | - Luis Javier Chirosa-Ríos
- Department of Physical Education and Sports, Faculty of Sports Sciences, University of Granada, 18071 Granada, Spain; (I.d.-C.); (D.J.-M.); (L.J.C.-R.); (M.D.M.-A.)
- Strength & Conditioning Laboratory, CTS-642 Research Group, Department Physical Education and Sports, Faculty of Sports Sciences, University of Granada, 18071 Granada, Spain
| | - María Dolores Morenas-Aguilar
- Department of Physical Education and Sports, Faculty of Sports Sciences, University of Granada, 18071 Granada, Spain; (I.d.-C.); (D.J.-M.); (L.J.C.-R.); (M.D.M.-A.)
- Strength & Conditioning Laboratory, CTS-642 Research Group, Department Physical Education and Sports, Faculty of Sports Sciences, University of Granada, 18071 Granada, Spain
| | - Miguel Mariscal-Arcas
- Department of Nutrition and Food Science, School of Pharmacy, University of Granada, 18071 Granada, Spain; (M.M.-A.); (A.L.-M.)
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18071 Granada, Spain
| | - Alejandro López-Moro
- Department of Nutrition and Food Science, School of Pharmacy, University of Granada, 18071 Granada, Spain; (M.M.-A.); (A.L.-M.)
| | - Pedro Delgado-Floody
- Department of Physical Education and Sports, Faculty of Sports Sciences, University of Granada, 18071 Granada, Spain; (I.d.-C.); (D.J.-M.); (L.J.C.-R.); (M.D.M.-A.)
- Department of Physical Education, Sports and Recreation, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|