1
|
Meinecke B, Meinecke-Tillmann S. Lab partners: oocytes, embryos and company. A personal view on aspects of oocyte maturation and the development of monozygotic twins. Anim Reprod 2023; 20:e20230049. [PMID: 37547564 PMCID: PMC10399133 DOI: 10.1590/1984-3143-ar2023-0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/12/2023] [Indexed: 08/08/2023] Open
Abstract
The present review addresses the oocyte and the preimplantation embryo, and is intended to highlight the underlying principle of the "nature versus/and nurture" question. Given the diversity in mammalian oocyte maturation, this review will not be comprehensive but instead will focus on the porcine oocyte. Historically, oogenesis was seen as the development of a passive cell nursed and determined by its somatic compartment. Currently, the advanced analysis of the cross-talk between the maternal environment and the oocyte shows a more balanced relationship: Granulosa cells nurse the oocyte, whereas the latter secretes diffusible factors that regulate proliferation and differentiation of the granulosa cells. Signal molecules of the granulosa cells either prevent the precocious initiation of meiotic maturation or enable oocyte maturation following hormonal stimulation. A similar question emerges in research on monozygotic twins or multiples: In Greek and medieval times, twins were not seen as the result of the common course of nature but were classified as faults. This seems still valid today for the rare and until now mainly unknown genesis of facultative monozygotic twins in mammals. Monozygotic twins are unique subjects for studies of the conceptus-maternal dialogue, the intra-pair similarity and dissimilarity, and the elucidation of the interplay between nature and nurture. In the course of in vivo collections of preimplantation sheep embryos and experiments on embryo splitting and other microsurgical interventions we recorded observations on double blastocysts within a single zona pellucida, double inner cell masses in zona-enclosed blastocysts and double germinal discs in elongating embryos. On the basis of these observations we add some pieces to the puzzle of the post-zygotic genesis of monozygotic twins and on maternal influences on the developing conceptus.
Collapse
Affiliation(s)
- Burkhard Meinecke
- Institut für Reproduktionsbiologie, Tierärztliche Hochschule Hannover, Hanover, Germany
- Ambulatorische und Geburtshilfliche Veterinärklinik, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Sabine Meinecke-Tillmann
- Institut für Reproduktionsbiologie, Tierärztliche Hochschule Hannover, Hanover, Germany
- Institut für Tierzucht und Haustiergenetik, Justus-Liebig-Universität Giessen, Giessen, Germany
| |
Collapse
|
2
|
Chavatte-Palmer P, Derisoud E, Robles M. Pregnancy and placental development in horses: an update. Domest Anim Endocrinol 2022; 79:106692. [PMID: 34823139 DOI: 10.1016/j.domaniend.2021.106692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 11/03/2022]
Abstract
Horses have been domesticated by man and historical information mostly associates horses with men. Nowadays, however, horse riding is essentially by women. Women are also very much involved in equine sciences, with a large contribution to the understanding of fetoplacental development. While highlighting the work of female scientists, this review describes the recent advances in equine fetoplacental studies, focusing on data obtained by new generation sequencing and progress on the understanding of the role of placental progesterone metabolites throughout gestation. A second emphasis is made on fetal programming, a currently very active field, where the importance of maternal nutrition, mare management or the use of embryo technologies has been shown to induce long term effects in the offspring that might affect progeny's performance. Finally, new perspectives for the study of equine pregnancy are drawn, that will rely on new methodologies applied to molecular explorations and imaging.
Collapse
Affiliation(s)
- P Chavatte-Palmer
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas 78350, France; Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort 94700, France.
| | - E Derisoud
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas 78350, France; Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort 94700, France
| | - M Robles
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas 78350, France; Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort 94700, France; INRS Centre Armand-Frappier Santé Biotechnologie, Laval, Québec H7V1B7, Canada
| |
Collapse
|
3
|
Lutzer A, Nagel C, Aurich J, Murphy BA, Aurich C. Development of foals until one year of age when the dam was exposed to blue monochromatic light directed at one eye during late pregnancy. J Equine Vet Sci 2022; 112:103922. [DOI: 10.1016/j.jevs.2022.103922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
|
4
|
Robles M, Couturier-Tarrade A, Derisoud E, Geeverding A, Dubois C, Dahirel M, Aioun J, Prezelin A, Calvez J, Richard C, Wimel L, Chavatte-Palmer P. Effects of dietary arginine supplementation in pregnant mares on maternal metabolism, placental structure and function and foal growth. Sci Rep 2019; 9:6461. [PMID: 31015538 PMCID: PMC6478728 DOI: 10.1038/s41598-019-42941-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/27/2019] [Indexed: 12/17/2022] Open
Abstract
Foals born to primiparous mares are lighter and less mature than those born to multiparous dams. Factors driving this difference are not totally understood. Using 7 multiparous and 6 primiparous standardbred mares, we demonstrated that, in late gestation, primiparous mares were less insulin resistant compared to multiparous mares, and that their foals had reduced plasma amino-acid concentrations at birth compared to foals born to multiparous mares. Vascular development, as observed through structure and gene expression, and global DNA methylation were also reduced in primiparous placentas. Another group of 8 primiparous mares was orally supplemented with L-arginine (100 g/day, 210d to term). L-arginine improved pregnancy-induced insulin resistance and increased maternal L-arginine and L-ornithine plasma concentrations but foal plasma amino acid concentrations were not affected at birth. At birth, foal weight and placental biometry, structure, ultra-structure and DNA methylation were not modified. Placental expression of genes involved in glucose and fatty acid transfers was increased. In conclusion, maternal insulin resistance in response to pregnancy and placental function are reduced in primiparous pregnancies. Late-gestation L-arginine supplementation may help primiparous mares to metabolically adapt to pregnancy and improve placental function. More work is needed to confirm these effects and ascertain optimal treatment conditions.
Collapse
Affiliation(s)
- Morgane Robles
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy en Josas, France
| | | | - Emilie Derisoud
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy en Josas, France
| | - Audrey Geeverding
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy en Josas, France
| | - Cedric Dubois
- IFCE, Station Expérimentale de la Valade, 19370 Chamberet, France
| | - Michele Dahirel
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy en Josas, France
| | - Josiane Aioun
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy en Josas, France
| | - Audrey Prezelin
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy en Josas, France
| | - Juliane Calvez
- UMR PNCA, AgroParisTech, INRA, Université Paris Saclay, 75005 Paris, France
| | - Christophe Richard
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy en Josas, France
| | - Laurence Wimel
- IFCE, Station Expérimentale de la Valade, 19370 Chamberet, France
| | | |
Collapse
|