1
|
Puchalska M, Witkowska‐Piłaszewicz O. Gene doping in horse racing and equine sports: Current landscape and future perspectives. Equine Vet J 2025; 57:312-324. [PMID: 39267222 PMCID: PMC11807943 DOI: 10.1111/evj.14418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/16/2024] [Indexed: 09/17/2024]
Abstract
Gene doping, the use of gene therapy or genetic manipulation to enhance athletic performance, has emerged as a potential threat to the integrity and welfare of equine sports, such as horse racing and equestrian sports. This review aims to provide an overview of gene doping in horses, including the underlying technologies, potential applications, detection methods, ethical concerns and future perspectives. By understanding the current landscape of gene doping in horses, stakeholders can work together to develop strategies to safeguard the integrity of equine sports.
Collapse
Affiliation(s)
- Maria Puchalska
- Department of Large Animals Diseases and Clinic, Institute of Veterinary MedicineWarsaw University of Life SciencesWarsawPoland
| | - Olga Witkowska‐Piłaszewicz
- Department of Large Animals Diseases and Clinic, Institute of Veterinary MedicineWarsaw University of Life SciencesWarsawPoland
| |
Collapse
|
2
|
Srikanth K, Kim NY, Park W, Kim JM, Kim KD, Lee KT, Son JH, Chai HH, Choi JW, Jang GW, Kim H, Ryu YC, Nam JW, Park JE, Kim JM, Lim D. Comprehensive genome and transcriptome analyses reveal genetic relationship, selection signature, and transcriptome landscape of small-sized Korean native Jeju horse. Sci Rep 2019; 9:16672. [PMID: 31723199 PMCID: PMC6853925 DOI: 10.1038/s41598-019-53102-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 10/18/2019] [Indexed: 12/16/2022] Open
Abstract
The Jeju horse, indigenous to the Jeju Island in Korea may have originated from Mongolian horses. Adaptations to the local harsh environment have conferred Jeju horse with unique traits such as small-sized body, stocky head, and shorter limbs. These characteristics have not been studied previously at the genomic level. Therefore, we sequenced and compared the genome of 41 horses belonging to 6 breeds. We identified numerous breed-specific non-synonymous SNPs and loss-of-function mutants. Demographic and admixture analyses showed that, though Jeju horse is genetically the closest to the Mongolian breeds, its genetic ancestry is independent of that of the Mongolian breeds. Genome wide selection signature analysis revealed that genes such as LCORL, MSTN, HMGA2, ZFAT, LASP1, PDK4, and ACTN2, were positively selected in the Jeju horse. RNAseq analysis showed that several of these genes were also differentially expressed in Jeju horse compared to Thoroughbred horse. Comparative muscle fiber analysis showed that, the type I muscle fibre content was substantially higher in Jeju horse compared to Thoroughbred horse. Our results provide insights about the selection of complex phenotypic traits in the small-sized Jeju horse and the novel SNPs identified will aid in designing high-density SNP chip for studying other native horse breeds.
Collapse
Affiliation(s)
- Krishnamoorthy Srikanth
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Nam-Young Kim
- Subtropical Livestock Research Institute, National Institute of Animal Science, Rural Development Administration, Jeju-do, 63242, Republic of Korea
| | - WonCheoul Park
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Jae-Min Kim
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | - Kyung-Tai Lee
- Animal Breeding and Genetics Division, National Institute of Animal Science, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Ju-Hwan Son
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Han-Ha Chai
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Jung-Woo Choi
- College of Animal Life Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Gul-Won Jang
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju, 55365, Republic of Korea
| | | | - Youn-Chul Ryu
- Division of Biotechnology, Jeju National University, Jeju, 63243, Republic of Korea
| | - Jin-Wu Nam
- Department of Life Science, Hanyang University, Seoul, 133-791, Republic of Korea
| | - Jong-Eun Park
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Jun-Mo Kim
- Department of Animal Science and Technology, College of Biotechnology and Natural Resources, Chung-Ang University, Ansung-si, 17546, Republic of Korea.
| | - Dajeong Lim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju, 55365, Republic of Korea.
| |
Collapse
|
3
|
Musiał AD, Ropka-Molik K, Piórkowska K, Jaworska J, Stefaniuk-Szmukier M. ACTN3 genotype distribution across horses representing different utility types and breeds. Mol Biol Rep 2019; 46:5795-5803. [PMID: 31392535 DOI: 10.1007/s11033-019-05013-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/30/2019] [Indexed: 01/13/2023]
Abstract
In horses, the identification of the genetic background of phenotypic variation, especially with regard to performance characteristics and predisposition to effort, has been extensively studied. As α-actinin-3 function is related to the regulation of muscle contraction and cell metabolism, the ACTN3 gene is considered one of the main genetic factors determining muscle strength. The aim of the present study was to assess the genotype distribution of two SNP variants within the equine ACTN3 gene (g.1104G > A and c.2334C > T) across different utility types and horse breeds. The analyses were performed on five breeds representing horses of different types, origins and utilities according to performance (in total 877 horses): primitive (Polish koniks; Hucul horses), draught (Polish heavy draught) and light (Thoroughbred and Arabian horses). Two polymorphisms within the ACTN3 gene locus were genotyped and genotype and allele frequency were compared across populations in order to verify if the identified differences contribute to the phenotypic variation observed in horse breeds. The present study allowed confirmation of the significant differences in genotype distribution of g.1104G > A localized in the promoter region between native breeds and racehorse breeds such as Thoroughbreds and Arabians. The allele/genotype variations between primitive and light breeds confirmed that the analysed variant was under selection pressure and can be correlated with racing ability. Moreover, the significant differences for the c.2334C > T genotype frequency between Arabian horses and other breeds indicate its relationship with endurance and athletic performance. The predominance of the T allele (85%) in Arabians suggests that the T variant was favoured during selection focused on improving stamina and could be one of the genetic factors determining endurance ability. Further research is needed to confirm the association of both polymorphisms with exact racing and/or riding results.
Collapse
Affiliation(s)
- Adrianna D Musiał
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Katarzyna Ropka-Molik
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland. .,Laboratory of Genomics, Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, 32-083, Balice, Poland.
| | - Katarzyna Piórkowska
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| | - Joanna Jaworska
- Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn - UWM, Olsztyn, Poland
| | - Monika Stefaniuk-Szmukier
- Department of Horse Breeding, Institute of Animal Science, University of Agriculture in Krakow, Kraków, Poland
| |
Collapse
|