1
|
Fang WH, Vangsness CT. Orthobiologic Products: Preservation Options for Orthopedic Research and Clinical Applications. J Clin Med 2024; 13:6577. [PMID: 39518716 PMCID: PMC11546119 DOI: 10.3390/jcm13216577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/14/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
The biological products used in orthopedics include musculoskeletal allografts-such as bones, tendons, ligaments, and cartilage-as well as biological therapies. Musculoskeletal allografts support the body's healing process by utilizing preserved and sterilized donor tissue. These allografts are becoming increasingly common in surgical practice, allowing patients to avoid more invasive procedures and the risks associated with donor site morbidity. Bone grafting is one of the most frequently used procedures in orthopedics and traumatology. Biologic approaches aim to improve clinical outcomes by enhancing the body's natural healing capacity and reducing inflammation. They serve as an alternative to surgical interventions. While preliminary results from animal studies and small-scale clinical trials have been promising, the field of biologics still lacks robust clinical evidence supporting their efficacy. Biological therapies include PRP (platelet-rich plasma), mesenchymal stem cells (MSCs)/stromal cells/progenitor cells, bone marrow stem/stromal cells (BMSCs), adipose stem/stromal cells/progenitor cells (ASCs), cord blood (CB), and extracellular vesicles (EVs), including exosomes. The proper preservation and storage of these cellular therapies are essential for future use. Preservation techniques include cryopreservation, vitrification, lyophilization, and the use of cryoprotective agents (CPAs). The most commonly used CPA is DMSO (dimethyl sulfoxide). The highest success rates and post-thaw viability have been achieved by preserving PRP with a rate-controlled freezer using 6% DMSO and storing other cellular treatments using a rate-controlled freezer with 5% or 10% DMSO as the CPA. Extracellular vesicles (EVs) have shown the best results when lyophilized with 50 mM or 4% trehalose to prevent aggregation and stored at room temperature.
Collapse
Affiliation(s)
- William H. Fang
- Department of Orthopedic Surgery, Valley Health Systems, 620 Shadow Lane, Las Vegas, NV 89106, USA
| | - C. Thomas Vangsness
- Department of Orthopedic Surgery, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| |
Collapse
|
2
|
Lomba L, García CB, Benito L, Sangüesa E, Santander S, Zuriaga E. Advances in Cryopreservatives: Exploring Safer Alternatives. ACS Biomater Sci Eng 2024; 10:178-190. [PMID: 38141007 DOI: 10.1021/acsbiomaterials.3c00859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Cryopreservation of cells, tissues, and organs is widely used in the biomedical and research world. There are different cryopreservatives that are used for this process; however, many of them, such as DMSO, are used despite the problems they present, mainly due to the toxicity it presents to certain types of samples. The aim of this Review is to highlight the different types of substances used in the cryopreservation process. It has been shown that some of these substances are well-known, as in the case of the families of alcohols, sugars, sulfoxides, etc. However, in recent years, other compounds have appeared, such as ionic liquids, deep eutectic solvents, or certain polymers, which open the door to new cryopreservation methods and are also less toxic to frozen samples.
Collapse
Affiliation(s)
- Laura Lomba
- Facultad de Ciencias de la Salud, Universidad San Jorge. Campus Universitario, Autov A23 km 299, 50830 Villanueva de Gállego, Zaragoza, Spain
| | - Cristina B García
- Facultad de Ciencias de la Salud, Universidad San Jorge. Campus Universitario, Autov A23 km 299, 50830 Villanueva de Gállego, Zaragoza, Spain
| | - Lucía Benito
- Facultad de Ciencias de la Salud, Universidad San Jorge. Campus Universitario, Autov A23 km 299, 50830 Villanueva de Gállego, Zaragoza, Spain
| | - Estela Sangüesa
- Facultad de Ciencias de la Salud, Universidad San Jorge. Campus Universitario, Autov A23 km 299, 50830 Villanueva de Gállego, Zaragoza, Spain
| | - Sonia Santander
- Faculty of Health and Sports Sciences, University of Zaragoza, Campus of Huesca, 22002 Huesca, Spain
| | - Estefanía Zuriaga
- Facultad de Ciencias de la Salud, Universidad San Jorge. Campus Universitario, Autov A23 km 299, 50830 Villanueva de Gállego, Zaragoza, Spain
| |
Collapse
|
3
|
Segabinazzi LGTM, Podico G, Rosser MF, Nanjappa SG, Alvarenga MA, Canisso IF. Three Manual Noncommercial Methods to Prepare Equine Platelet-Rich Plasma. Animals (Basel) 2021; 11:1478. [PMID: 34063777 PMCID: PMC8223772 DOI: 10.3390/ani11061478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 05/10/2021] [Indexed: 12/19/2022] Open
Abstract
In light of PRP's increasing popularity in veterinary practice, this study aimed to compare three manual methods to prepare and cool equine PRP. The blood of 18 clinically healthy mares was collected via venipuncture in a blood transfusion bag (method 1), blood tubes (method 2), and a syringe (method 3). In method 1, samples were double centrifuged; method 2 involved one centrifugation, and in method 3 the syringe was kept in an upright position to sediment for 4 h. After processing with three methods, PRP and platelet-poor plasma (PPP) were extracted and assessed for red (RBC) and white blood cell counts (WBC), platelet counts, and viability. In a subset of mares (n = 6), samples were processed with the three methods, and PRP was evaluated at 6 and 24 h postcooling at 5 °C. Method 1 resulted in the highest and method 3 in the lowest platelet concentration (p < 0.05), and the latter also had greater contamination with WBC than the others (p < 0.001). Platelet viability was similar across treatments (p > 0.05). Cooling for 24 h did not affect platelet counts in all methods (p > 0.05); however, platelet viability was reduced after cooling PRP produced by method 3 (p = 0.04), and agglutination increased over time in all methods (p < 0.001). The three methods increased (1.8-5.6-fold) platelet concentration in PRP compared to whole blood without compromising platelet viability. In conclusion, all three methods concentrated platelets and while cooling affected their viability. It remains unknown whether the different methods and cooling would affect PRP's clinical efficacy.
Collapse
Affiliation(s)
- Lorenzo G. T. M. Segabinazzi
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois Urbana Champaign, Urbana, IL 61802, USA; (L.G.T.M.S.); (G.P.)
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618681, SP, Brazil;
| | - Giorgia Podico
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois Urbana Champaign, Urbana, IL 61802, USA; (L.G.T.M.S.); (G.P.)
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana Champaign, Urbana, IL 61802, USA
| | - Michael F. Rosser
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA; (M.F.R.); (S.G.N.)
| | - Som G. Nanjappa
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA; (M.F.R.); (S.G.N.)
| | - Marco A. Alvarenga
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618681, SP, Brazil;
| | - Igor F. Canisso
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois Urbana Champaign, Urbana, IL 61802, USA; (L.G.T.M.S.); (G.P.)
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana Champaign, Urbana, IL 61802, USA
| |
Collapse
|
4
|
De Angelis E, Grolli S, Saleri R, Conti V, Andrani M, Berardi M, Cavalli V, Passeri B, Ravanetti F, Borghetti P. Platelet lysate reduces the chondrocyte dedifferentiation during in vitro expansion: Implications for cartilage tissue engineering. Res Vet Sci 2020; 133:98-105. [PMID: 32961475 DOI: 10.1016/j.rvsc.2020.08.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/08/2020] [Accepted: 08/30/2020] [Indexed: 12/13/2022]
Abstract
In vitro studies have demonstrated that platelet lysate (PL) can serve as an alternative to platelet-rich plasma (PRP) to sustain chondrocyte proliferation and production of extracellular matrix components in chondrocytes. The present study aimed to evaluate the direct effects of PL on equine articular chondrocytes in vitro in order to provide a rationale for in vivo use of PL. An in vitro cell proliferation and de-differentiation model was used: primary articular chondrocytes isolated from horse articular cartilage were cultured at low density under adherent conditions to promote cell proliferation. Chondrocytes were cultured in serum-free medium, 10% foetal bovine serum (FBS) supplemented medium, or in the presence of alginate beads containing 5%, 10% and 20% PL. Cell proliferation and gene expression of relevant chondrocyte differentiation markers were investigated. The proliferative capacity of cultured chondrocytes, was sustained more effectively at certain concentrations of PL as compared to that with FBS. In addition, as opposed to FBS, PL, particularly at percentages of 5% and 10%, could maintain the gene expression pattern of relevant chondrocyte differentiation markers. In particular, 5% PL supplementation showed the best compromise between chondrocyte proliferation capacity and maintenance of differentiation. The results of the present study provide a rationale for using PL as an alternative to FBS for in vitro expansion of chondrocytes for matrix-assisted chondrocyte implantation, construction of 3D scaffolds for tissue engineering, and treatment of damaged articular cartilage.
Collapse
Affiliation(s)
| | - Stefano Grolli
- Department of Veterinary Sciences, University of Parma, Italy
| | - Roberta Saleri
- Department of Veterinary Sciences, University of Parma, Italy
| | - Virna Conti
- Department of Veterinary Sciences, University of Parma, Italy
| | - Melania Andrani
- Department of Veterinary Sciences, University of Parma, Italy
| | - Martina Berardi
- Department of Veterinary Sciences, University of Parma, Italy
| | - Valeria Cavalli
- Department of Veterinary Sciences, University of Parma, Italy
| | | | | | - Paolo Borghetti
- Department of Veterinary Sciences, University of Parma, Italy
| |
Collapse
|
5
|
Perego R, Spada E, Baggiani L, Martino PA, Proverbio D. Efficacy of a Semi Automated Commercial Closed System for Autologous Leukocyte- and Platelet-Rich Plasma (l-prp) Production in Dogs: A Preliminary Study. Animals (Basel) 2020; 10:ani10081342. [PMID: 32759643 PMCID: PMC7459512 DOI: 10.3390/ani10081342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/30/2020] [Accepted: 08/01/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND To characterize the cellular composition (platelets, erythrocytes, and leukocytes) and determine platelet-derived growth factor isoform BB (PDGF-BB) concentration in canine leukocyte- and platelet rich plasma (L-PRP) produced using a commercial semi-automated closed system. METHODS Twenty milliliters of citrated whole blood were obtained from 30 healthy un-sedated canine blood donors and processed using a semi-automated completely closed commercial system (CPUNT 20, Eltek group, Casale Monferrato, Alessandria, Italy) according to the manufacturer's instructions. Erythrocyte, leukocyte, and platelet counts were determined in both whole blood (WB) and resultant L-PRP. The PDGF-BB concentration was evaluated after bovine thrombin activation of 10 L-PRP samples. RESULTS This commercial system produced on average 2.3 ± 0.7 mL of L-PRP containing a high concentration of platelets (767,633 ± 291,001 μL, p < 0.001), with a 4.4 fold increase in platelet count, lower concentration of erythrocytes (528,600 ± 222,773 μL, p < 0.001) and similar concentration of leukocytes (8422 ± 6346 μL, p = 0.9918) compared with WB. L-PRP had an average of 3442 ± 2061 pg/mL of PDGF-BB after thrombin activation. Neutrophils, lymphocytes and monocytes average percent content in L-PRP was 14.8 ± 13.2, 71.7 ± 18.5 and 10.7 ± 6.4, respectively. CONCLUSION Sterile canine L-PRP prepared using this semi-automated closed system is easy to obtain, produces a significant increase in platelet count compared to WB and contains a detectable concentration of PDGF-BB after activation. Additional in vitro and in vivo studies are needed to assess inflammatory markers concentration and the therapeutic efficacy of this L-PRP in dogs.
Collapse
Affiliation(s)
- Roberta Perego
- Veterinary Transfusion Research Laboratory (REVLab), Department of Veterinary Medicine (DIMEVET), University of Milan, via dell’Università 6, 26900 Lodi, Italy; (L.B.); (D.P.)
- Correspondence: (R.P.); (E.S.); Tel.: +39-0250334521 (R.P.); +39-0250334520 (E.S.)
| | - Eva Spada
- Veterinary Transfusion Research Laboratory (REVLab), Department of Veterinary Medicine (DIMEVET), University of Milan, via dell’Università 6, 26900 Lodi, Italy; (L.B.); (D.P.)
- Correspondence: (R.P.); (E.S.); Tel.: +39-0250334521 (R.P.); +39-0250334520 (E.S.)
| | - Luciana Baggiani
- Veterinary Transfusion Research Laboratory (REVLab), Department of Veterinary Medicine (DIMEVET), University of Milan, via dell’Università 6, 26900 Lodi, Italy; (L.B.); (D.P.)
| | - Piera Anna Martino
- Department of Veterinary Medicine (DIMEVET), University of Milan, via dell’Università 6, 26900 Lodi, Italy;
| | - Daniela Proverbio
- Veterinary Transfusion Research Laboratory (REVLab), Department of Veterinary Medicine (DIMEVET), University of Milan, via dell’Università 6, 26900 Lodi, Italy; (L.B.); (D.P.)
| |
Collapse
|