1
|
Temerario L, Cicirelli V, Martino NA, Carbonari A, Burgio M, Frattina L, Lacalandra GM, Rizzo A, Dell'Aquila ME. Short- and Long-Term Storage of Non-Domesticated European Mouflon ( Ovis aries musimon) Cumulus-Oocyte Complexes Recovered in Field Conditions. Animals (Basel) 2024; 14:807. [PMID: 38473192 DOI: 10.3390/ani14050807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Reproductive biotechnologies can be used as a supporting tool, through gamete conservation and in vitro embryo production, in the preservation of invaluable and irreplaceable animal genetic resources. In the present study, immature mouflon cumulus-oocyte complexes (COCs) collected from ovariectomized female ovaries underwent short- or long-term conservation (24 h maintained in Earle's/Hank's (EH) medium or vitrification) under field conditions and afterwards transported to the laboratory where they were cultured for in vitro maturation (IVM) and assessed for oocyte meiotic competence and bioenergetic-oxidative status. Utilization of both storage techniques led to COC morphology preservation, as well as cumulus expansion and oocyte meiotic resumption after the IVM procedure. Quantitative bioenergetic-oxidative parameters were reduced in vitrified oocytes compared with EH ones. Immature COC storage needs to be optimized in both domesticated and non-domesticated sheep as a part of the strategy to avoid the loss of valuable genotypes of these animal species.
Collapse
Affiliation(s)
- Letizia Temerario
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Strada per Casamassima km 3, 70010 Valenzano, Italy
| | - Vincenzo Cicirelli
- Department of Veterinary Medicine, University of Bari Aldo Moro, km 3 Strada per Casamassima, 70010 Valenzano, Italy
| | - Nicola Antonio Martino
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Strada per Casamassima km 3, 70010 Valenzano, Italy
| | - Alice Carbonari
- Department of Veterinary Medicine, University of Bari Aldo Moro, km 3 Strada per Casamassima, 70010 Valenzano, Italy
| | - Matteo Burgio
- Department of Veterinary Medicine, University of Bari Aldo Moro, km 3 Strada per Casamassima, 70010 Valenzano, Italy
| | - Lorenza Frattina
- Department of Veterinary Medicine, University of Bari Aldo Moro, km 3 Strada per Casamassima, 70010 Valenzano, Italy
| | - Giovanni Michele Lacalandra
- Department of Veterinary Medicine, University of Bari Aldo Moro, km 3 Strada per Casamassima, 70010 Valenzano, Italy
| | - Annalisa Rizzo
- Department of Veterinary Medicine, University of Bari Aldo Moro, km 3 Strada per Casamassima, 70010 Valenzano, Italy
| | - Maria Elena Dell'Aquila
- Department of Biosciences, Biotechnologies & Environment, University of Bari Aldo Moro, Strada per Casamassima km 3, 70010 Valenzano, Italy
| |
Collapse
|
2
|
Mahmood K, Ali Channa A, Ghafoor A, Riaz A. Factors affecting the efficiency of equine embryo transfer (EET) in polo mares under subtropical conditions of Pakistan. PLoS One 2024; 19:e0298066. [PMID: 38346056 PMCID: PMC10861068 DOI: 10.1371/journal.pone.0298066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/17/2024] [Indexed: 02/15/2024] Open
Abstract
Equine embryo transfer (EET) is a prominent technology in the equine breeding industry, and its efficacy is affected by a number of factors. The current study aimed to determine the effects of the breed of donor/recipient mares, estrus/ovulation induction treatment, cooled transportation of embryos, and synchrony between donor and recipient mares on the efficiency of the EET under subtropical conditions of Pakistan. A total of eighty-four (n = 84) Polo-playing donor mares (Argentino-polo = 41 and Anglo-Arab = 43) and seventy (n = 70) recipient mares (light breed = 26 and heavy breed = 44) were used for EET. The donor mares exhibiting natural estrus (n = 28) were detected by teaser a stallion, and corpus luteum (CL) having mares (n = 56) were treated with prostaglandin (150 μg of Cloprostenol) for estrus induction. The mares' follicular growth was monitored through ultrasonography until the dominant follicle's size reached 35 mm or more with a moderate to obvious uterine edema score. Afterward, the mares were treated either with GnRH, i.e., 50 μg of Lecirelin acetate (n = 41) or Ovusyn, i.e., 1500 IU hCG (n = 43). Insemination with chilled semen was performed 24 hours later. The embryos were collected non-surgically, 7 or 8 days after ovulation, from the donor mares. The collected embryos were transferred into the well-synchronized recipient mares as fresh (n = 44) or chilled (n = 26) embryos. The pregnancy after ET was checked through ultrasonography. Statistical analysis revealed that the embryo recovery rate (ERR) remained significantly higher (P<0.05) for the Prostaglandin (PG) treated group of donors as compared to the natural heat group of donors. The breed of donor mares, type of ovulatory treatment given, and day of embryo collection did not significantly (P>0.05) affect the ERR. There was no significant effect of the type (fresh vs chilled), classification, and stage of development of embryo on pregnancy outcomes (P>0.05). ET pregnancy rate was significantly affected by the breed of recipient mares and ovulation synchrony between donor and recipient mares (P<0.05). In conclusion, under the subtropical conditions of Pakistan, PG-based estrus induction of donor mares, breed of recipient mares, and ovulation synchrony between the donor and recipient mares had a substantial effect on the efficiency of EET.
Collapse
Affiliation(s)
- Khalid Mahmood
- Department of Theriogenology, University of Veterinary and Animal Sciences, Lahore, Punjab, Pakistan
| | - Aijaz Ali Channa
- Department of Theriogenology, University of Veterinary and Animal Sciences, Lahore, Punjab, Pakistan
| | - Aamir Ghafoor
- University Diagnostic Lab (UDL) at Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, Punjab, Pakistan
| | - Amjad Riaz
- Department of Theriogenology, University of Veterinary and Animal Sciences, Lahore, Punjab, Pakistan
| |
Collapse
|
3
|
Briski O, Salamone DF. Past, present and future of ICSI in livestock species. Anim Reprod Sci 2022; 246:106925. [PMID: 35148927 DOI: 10.1016/j.anireprosci.2022.106925] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 01/03/2022] [Accepted: 01/16/2022] [Indexed: 12/14/2022]
Abstract
During the past 2 decades, intracytoplasmic sperm injection (ICSI) has become a routine technique for clinical applications in humans. The widespread use among domestic species, however, has been limited to horses. In horses, ICSI is used to reproduce elite individuals and, as well as in humans, to mitigate or even circumvent reproductive barriers. Failures in superovulation and conventional in vitro fertilization (IVF) have been the main reason for the use of this technology in horses. In pigs, ICSI has been successfully used to produce transgenic animals. A series of factors have resulted in implementation of ICSI in pigs: need to use zygotes for numerous technologies, complexity of collecting zygotes surgically, and problems of polyspermy when there is utilization of IVF procedures. Nevertheless, there have been very few additional reports confirming positive results with the use of ICSI in pigs. The ICSI procedure could be important for use in cattle of high genetic value by maximizing semen utilization, as well as for utilization of spermatozoa from prepubertal bulls, by providing the opportunity to shorten the generation interval. When attempting to utilize ICSI in ruminants, there are some biological limitations that need to be overcome if this procedure is going to be efficacious for making genetic improvements in livestock in the future. In this review article, there is an overview and projection of the methodologies and applications that are envisioned for ICSI utilization in these species in the future.
Collapse
Affiliation(s)
- O Briski
- Universidad de Buenos Aires, Facultad de Agronomía, Departamento de Producción Animal, Buenos Aires, Laboratorio Biotecnología Animal (LabBA), Av. San Martin 4453, Ciudad Autónoma de, Buenos Aires 1417, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Investigaciones en Producción Animal (INPA), Buenos Aires, Argentina
| | - D F Salamone
- Universidad de Buenos Aires, Facultad de Agronomía, Departamento de Producción Animal, Buenos Aires, Laboratorio Biotecnología Animal (LabBA), Av. San Martin 4453, Ciudad Autónoma de, Buenos Aires 1417, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Investigaciones en Producción Animal (INPA), Buenos Aires, Argentina.
| |
Collapse
|
4
|
Success rate in a clinical equine in vitro embryo production program. Theriogenology 2022; 187:215-218. [DOI: 10.1016/j.theriogenology.2022.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 10/18/2022]
|
5
|
Benammar A, Derisoud E, Vialard F, Palmer E, Ayoubi JM, Poulain M, Chavatte-Palmer P. The Mare: A Pertinent Model for Human Assisted Reproductive Technologies? Animals (Basel) 2021; 11:2304. [PMID: 34438761 PMCID: PMC8388489 DOI: 10.3390/ani11082304] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/28/2021] [Accepted: 08/01/2021] [Indexed: 12/12/2022] Open
Abstract
Although there are large differences between horses and humans for reproductive anatomy, follicular dynamics, mono-ovulation, and embryo development kinetics until the blastocyst stage are similar. In contrast to humans, however, horses are seasonal animals and do not have a menstrual cycle. Moreover, horse implantation takes place 30 days later than in humans. In terms of artificial reproduction techniques (ART), oocytes are generally matured in vitro in horses because ovarian stimulation remains inefficient. This allows the collection of oocytes without hormonal treatments. In humans, in vivo matured oocytes are collected after ovarian stimulation. Subsequently, only intra-cytoplasmic sperm injection (ICSI) is performed in horses to produce embryos, whereas both in vitro fertilization and ICSI are applied in humans. Embryos are transferred only as blastocysts in horses. In contrast, four cells to blastocyst stage embryos are transferred in humans. Embryo and oocyte cryopreservation has been mastered in humans, but not completely in horses. Finally, both species share infertility concerns due to ageing and obesity. Thus, reciprocal knowledge could be gained through the comparative study of ART and infertility treatments both in woman and mare, even though the horse could not be used as a single model for human ART.
Collapse
Affiliation(s)
- Achraf Benammar
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France; (A.B.); (E.D.); (F.V.); (J.M.A.); (M.P.)
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
- Department of Gynaecology and Obstetrics, Foch Hospital, 92150 Suresnes, France
| | - Emilie Derisoud
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France; (A.B.); (E.D.); (F.V.); (J.M.A.); (M.P.)
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - François Vialard
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France; (A.B.); (E.D.); (F.V.); (J.M.A.); (M.P.)
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Eric Palmer
- Académie d’Agriculture de France, 75007 Paris, France;
| | - Jean Marc Ayoubi
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France; (A.B.); (E.D.); (F.V.); (J.M.A.); (M.P.)
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
- Department of Gynaecology and Obstetrics, Foch Hospital, 92150 Suresnes, France
| | - Marine Poulain
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France; (A.B.); (E.D.); (F.V.); (J.M.A.); (M.P.)
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
- Department of Gynaecology and Obstetrics, Foch Hospital, 92150 Suresnes, France
| | - Pascale Chavatte-Palmer
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France; (A.B.); (E.D.); (F.V.); (J.M.A.); (M.P.)
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| |
Collapse
|