1
|
Hackett ES, McOnie RC, Buote NJ, Fubini SL. Current practices in equine minimally invasive soft tissue surgery. Vet Surg 2025; 54:59-67. [PMID: 39136184 DOI: 10.1111/vsu.14146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/14/2024] [Indexed: 01/16/2025]
Abstract
Equine minimally invasive surgical techniques are frequently utilized in the treatment of a variety of conditions. Standing sedated endoscopic surgery is commonly selected in horses, requiring specialized facilities, anesthetic protocols, and surgeon and assistant expertise. This review examines current methods and potential strategies in equine soft tissue surgery, in which there is an emphasis on laparoscopic urogenital and gastrointestinal diagnostic and therapeutic procedures. Thoracoscopy is less frequently reported in horses and may be underutilized. Optimizing procedures and outcomes in soft tissue surgery relies on innovation and interdisciplinary collaboration. Modern advances in surgical equipment and emerging medical technologies support development in these fields. Participation in continuing education is effective in acquiring and sustaining knowledge and skills and improving clinical practice. Forums with an integrated approach could rapidly expand knowledge across species.
Collapse
Affiliation(s)
- Eileen S Hackett
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, New York, USA
| | - Rebecca C McOnie
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, New York, USA
| | - Nicole J Buote
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, New York, USA
| | - Susan L Fubini
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, New York, USA
| |
Collapse
|
2
|
Saljic A, Friederike Fenner M, Winters J, Flethøj M, Eggert Eggertsen C, Carstensen H, Dalgas Nissen S, Melis Hesselkilde E, van Hunnik A, Schotten U, Sørensen U, Jespersen T, Verheule S, Buhl R. Increased fibroblast accumulation in the equine heart following persistent atrial fibrillation. IJC HEART & VASCULATURE 2021; 35:100842. [PMID: 34355058 PMCID: PMC8322305 DOI: 10.1016/j.ijcha.2021.100842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 01/06/2023]
Abstract
BACKGROUND Fibroblasts maintain the extracellular matrix homeostasis and may couple to cardiomyocytes through gap junctions and thereby increase the susceptibility to slow conduction and cardiac arrhythmias, such as atrial fibrillation (AF). In this study, we used an equine model of persistent AF to characterize structural changes and the role of fibroblasts in the development of an arrhythmogenic substrate for AF. MATERIAL AND METHODS Eleven horses were subjected to atrial tachypacing until self-sustained AF developed and were kept in AF for six weeks. Horses in sinus rhythm (SR) served as control. In terminal open-chest experiments conduction velocity (CV) was measured. Tissue was harvested and stained from selected sites. Automated image analysis was performed to assess fibrosis, fibroblasts, capillaries and various cardiomyocyte characteristics. RESULTS Horses in SR showed a rate-dependent slowing of CV, while in horses with persistent AF this rate-dependency was completely abolished (CV•basic cycle length relation p = 0.0295). Overall and interstitial amounts of fibrosis were unchanged, but an increased fibroblast count was found in left atrial appendage, Bachmann's bundle, intraatrial septum and pulmonary veins (p < 0.05 for all) in horses with persistent AF. The percentage of α-SMA expressing fibroblasts remained the same between the groups. CONCLUSION Persistent AF resulted in fibroblast accumulation in several regions, particularly in the left atrial appendage. The increased number of fibroblasts could be a mediator of altered electrophysiology during AF. Targeting the fibroblast proliferation and differentiation could potentially serve as a novel therapeutic target slowing down the structural remodeling associated with AF.
Collapse
Affiliation(s)
- Arnela Saljic
- Laboratory of Cardiac Physiology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Merle Friederike Fenner
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Agrovej 8, DK-2630 Taastrup, Denmark
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 7, 1870 Frederiksberg, Denmark
| | - Joris Winters
- Department of Physiology, Maastricht University, Maastricht, Netherlands
| | - Mette Flethøj
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Agrovej 8, DK-2630 Taastrup, Denmark
| | - Caroline Eggert Eggertsen
- Laboratory of Cardiac Physiology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Helena Carstensen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Agrovej 8, DK-2630 Taastrup, Denmark
| | - Sarah Dalgas Nissen
- Laboratory of Cardiac Physiology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Eva Melis Hesselkilde
- Laboratory of Cardiac Physiology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Arne van Hunnik
- Department of Physiology, Maastricht University, Maastricht, Netherlands
| | - Ulrich Schotten
- Department of Physiology, Maastricht University, Maastricht, Netherlands
| | | | - Thomas Jespersen
- Laboratory of Cardiac Physiology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Sander Verheule
- Department of Physiology, Maastricht University, Maastricht, Netherlands
| | - Rikke Buhl
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Agrovej 8, DK-2630 Taastrup, Denmark
| |
Collapse
|
3
|
Fenner MF, Gatta G, Sattler S, Kuiper M, Hesselkilde EM, Adler DMT, Smerup M, Schotten U, Sørensen U, Diness JG, Jespersen T, Verheule S, Van Hunnik A, Buhl R. Inhibition of Small-Conductance Calcium-Activated Potassium Current ( I K,Ca) Leads to Differential Atrial Electrophysiological Effects in a Horse Model of Persistent Atrial Fibrillation. Front Physiol 2021; 12:614483. [PMID: 33633584 PMCID: PMC7900437 DOI: 10.3389/fphys.2021.614483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
Background Small-conductance Ca2+-activated K+ (KCa2) channels have been proposed as a possible atrial-selective target to pharmacologically terminate atrial fibrillation (AF) and to maintain sinus rhythm. However, it has been hypothesized that the importance of the KCa2 current—and thereby the efficacy of small-conductance Ca2+-activated K+ current (IK,Ca) inhibition—might be negatively related to AF duration and the extent of AF-induced remodeling. Experimental Approach and Methods To address the hypothesis of the efficacy of IK,Ca inhibition being dependent on AF duration, the anti-arrhythmic properties of the IK,Ca inhibitor NS8593 (5 mg/kg) and its influence on atrial conduction were studied using epicardial high-density contact mapping in horses with persistent AF. Eleven Standardbred mares with tachypacing-induced persistent AF (42 ± 5 days of AF) were studied in an open-chest experiment. Unipolar AF electrograms were recorded and isochronal high-density maps analyzed to allow for the reconstruction of wave patterns and changes in electrophysiological parameters, such as atrial conduction velocity and AF cycle length. Atrial anti-arrhythmic properties and adverse effects of NS8593 on ventricular electrophysiology were evaluated by continuous surface ECG monitoring. Results IK,Ca inhibition by NS8593 administered intravenously had divergent effects on right and left AF complexity and propagation properties in this equine model of persistent AF. Despite global prolongation of AF cycle length, a slowing of conduction in the right atrium led to increased anisotropy and electrical dissociation, thus increasing AF complexity. In contrast, there was no significant change in AF complexity in the LA, and cardioversion of AF was not achieved. Conclusions Intra-atrial heterogeneity in response to IK,Ca inhibition by NS8593 was observed. The investigated dose of NS8593 increased the AF cycle length but was not sufficient to induce cardioversion. In terms of propagation properties during AF, IK,Ca inhibition by NS8593 led to divergent effects in the right and left atrium. This divergent behavior may have impeded the cardioversion success.
Collapse
Affiliation(s)
- Merle Friederike Fenner
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | - Giulia Gatta
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht, Netherlands
| | - Stefan Sattler
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marion Kuiper
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht, Netherlands
| | - Eva Melis Hesselkilde
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ditte M T Adler
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | - Morten Smerup
- Department of Cardiothoracic Surgery, The Heart Centre, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ulrich Schotten
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht, Netherlands
| | | | | | - Thomas Jespersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sander Verheule
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht, Netherlands
| | - Arne Van Hunnik
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht, Netherlands
| | - Rikke Buhl
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| |
Collapse
|