1
|
Salgado N, Silva MA, Figueira ME, Costa HS, Albuquerque TG. Oxalate in Foods: Extraction Conditions, Analytical Methods, Occurrence, and Health Implications. Foods 2023; 12:3201. [PMID: 37685134 PMCID: PMC10486698 DOI: 10.3390/foods12173201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Oxalate is an antinutrient present in a wide range of foods, with plant products, especially green leafy vegetables, being the main sources of dietary oxalates. This compound has been largely associated with hyperoxaluria, kidney stone formation, and, in more severe cases, systematic oxalosis. Due to its impact on human health, it is extremely important to control the amount of oxalate present in foods, particularly for patients with kidney stone issues. In this review, a summary and discussion of the current knowledge on oxalate analysis, its extraction conditions, specific features of analytical methods, reported occurrence in foods, and its health implications are presented. In addition, a brief conclusion and further perspectives on whether high-oxalate foods are truly problematic and can be seen as health threats are shown.
Collapse
Affiliation(s)
- Neuza Salgado
- Research and Development Unit, Department of Food and Nutrition, National Institute of Health Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal (T.G.A.)
- Faculty of Pharmacy, University of Lisbon, Avenida Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - Mafalda Alexandra Silva
- Research and Development Unit, Department of Food and Nutrition, National Institute of Health Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal (T.G.A.)
- REQUIMTE-LAQV/Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Maria Eduardo Figueira
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Avenida Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - Helena S. Costa
- Research and Development Unit, Department of Food and Nutrition, National Institute of Health Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal (T.G.A.)
- REQUIMTE-LAQV/Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Tânia Gonçalves Albuquerque
- Research and Development Unit, Department of Food and Nutrition, National Institute of Health Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal (T.G.A.)
- REQUIMTE-LAQV/Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
2
|
Pathaw N, Devi KS, Sapam R, Sanasam J, Monteshori S, Phurailatpam S, Devi HC, Chanu WT, Wangkhem B, Mangang NL. A comparative review on the anti-nutritional factors of herbal tea concoctions and their reduction strategies. Front Nutr 2022; 9:988964. [PMID: 36276812 PMCID: PMC9581206 DOI: 10.3389/fnut.2022.988964] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/09/2022] [Indexed: 11/27/2022] Open
Abstract
Tea is an important beverage consumed worldwide. Of the different types of tea available, herbal tea is an important beverage consumed owing to its popularity as a drink and stress relieving factors, several different herbal concoctions made from seeds, leaves, or roots are currently consumed and sold as herbal teas. The herbal teas are not the usual tea but "tisanes." They are caffeine free and popular for their medicinal property or immune boosters. Herbal tea formulations are popularly sold and consumed by millions owing to their health benefits as they are rich in antioxidants and minerals. However, plants are also known to contain toxic and anti-nutritional factors. Anti-nutritional factors are known to interfere with the metabolic process and hamper the absorption of important nutrients in the body. These anti-nutritional factors include saponins, tannins, alkaloids, oxalates, lectins, goitrogens, cyanogens, and lethogens. These chemicals are known to have deleterious effects on human health. Therefore, it is important to understand and assess the merits and demerits before consumption. Also, several techniques are currently used to process and reduce the anti-nutrients in foods. This review is focused on comparing the contents of various anti-nutritional factors in some underutilized plants of North-East India used as herbal tea along with processing methods that can be used to reduce the level of these anti-nutrients.
Collapse
Affiliation(s)
- Neeta Pathaw
- Indian Council of Agricultural Research, Research Complex for North Eastern Hill Region, Imphal, Manipur, India
| | - Konjengbam Sarda Devi
- Indian Council of Agricultural Research, Research Complex for North Eastern Hill Region, Imphal, Manipur, India
| | - Redina Sapam
- Indian Council of Agricultural Research, Research Complex for North Eastern Hill Region, Imphal, Manipur, India
| | - Jyotsana Sanasam
- Indian Council of Agricultural Research, Research Complex for North Eastern Hill Region, Imphal, Manipur, India
| | - Sapam Monteshori
- Indian Council of Agricultural Research, Research Complex for North Eastern Hill Region, Imphal, Manipur, India
| | - Sumitra Phurailatpam
- Multi Technology Testing Centre and Vocational Training Centre, College of Agriculture, Central Agricultural University, Imphal, Manipur, India
| | | | | | - Baby Wangkhem
- College of Agriculture, Central Agricultural University, Imphal, Manipur, India
| | - Naorem Loya Mangang
- Indian Council of Agricultural Research, Research Complex for North Eastern Hill Region, Imphal, Manipur, India
| |
Collapse
|
3
|
Huynh NK, Nguyen DH, Nguyen HV. Effects of processing on oxalate contents in plant foods: A review. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
4
|
Mitharwal S, Kumar A, Chauhan K, Taneja NK. Nutritional, phytochemical composition and potential health benefits of taro (Colocasia esculenta L.) leaves: A review. Food Chem 2022; 383:132406. [PMID: 35176712 DOI: 10.1016/j.foodchem.2022.132406] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 11/19/2022]
Abstract
Colocasia esculenta(L) or taro is a tropical crop largely produced for its tubers (corms) while leaves and stems remain underutilized and untapped by-products with promising potential applications.Colocasialeaves are low in calories, rich in proteins, dietary fiber, and micronutrients. However, its utilization as food remains limited owing to the lack of awareness vis-à-vis its nutritional profile and the presence of antinutrients such as tannins, phytates and oxalates. The antinutritional factors can be overcome by cooking and varied processing techniques thereby unveiling the nutritional benefits. The high content of bioactive compounds and antioxidative potential of colocasia leaves renders several health benefits such as anticancer, antidiabetic, anti-inflammatory activity. The paper reviews the available literature on the nutritional, antinutritional, phytochemical profile of taro leaves and the advanced analytical techniques for their identification and quantification. Further, its health benefits and food applications have been discussed.
Collapse
Affiliation(s)
- Swati Mitharwal
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship & Management (NIFTEM), Kundli 131028, India
| | - Ankur Kumar
- Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship & Management (NIFTEM), Kundli 131028, India
| | - Komal Chauhan
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship & Management (NIFTEM), Kundli 131028, India.
| | - Neetu Kumra Taneja
- Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship & Management (NIFTEM), Kundli 131028, India
| |
Collapse
|
5
|
Kaur N, Agarwal A, Sabharwal M, Jaiswal N. Natural Food Toxins as Anti‐Nutritional Factors in Plants and Their Reduction Strategies. Food Chem 2021. [DOI: 10.1002/9781119792130.ch8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
6
|
Kristl J, Sem V, Mergeduš A, Zavišek M, Ivančič A, Lebot V. Variation in oxalate content among corm parts, harvest time, and cultivars of taro (Colocasia esculenta (L.) Schott). J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Samtiya M, Aluko RE, Dhewa T. Plant food anti-nutritional factors and their reduction strategies: an overview. FOOD PRODUCTION, PROCESSING AND NUTRITION 2020. [DOI: 10.1186/s43014-020-0020-5] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Abstract
Legumes and cereals contain high amounts of macronutrients and micronutrients but also anti-nutritional factors. Major anti-nutritional factors, which are found in edible crops include saponins, tannins, phytic acid, gossypol, lectins, protease inhibitors, amylase inhibitor, and goitrogens. Anti-nutritional factors combine with nutrients and act as the major concern because of reduced nutrient bioavailability. Various other factors like trypsin inhibitors and phytates, which are present mainly in legumes and cereals, reduce the digestibility of proteins and mineral absorption. Anti-nutrients are one of the key factors, which reduce the bioavailability of various components of the cereals and legumes. These factors can cause micronutrient malnutrition and mineral deficiencies. There are various traditional methods and technologies, which can be used to reduce the levels of these anti-nutrient factors. Several processing techniques and methods such as fermentation, germination, debranning, autoclaving, soaking etc. are used to reduce the anti-nutrient contents in foods. By using various methods alone or in combinations, it is possible to reduce the level of anti-nutrients in foods. This review is focused on different types of anti-nutrients, and possible processing methods that can be used to reduce the level of these factors in food products.
Graphical abstract
A brief overview of beneficial effects of anti-nutrients and reduction strategy.
Collapse
|
8
|
Albert A, Tiwari V, Paul E, Ponnusamy S, Ganesan D, Prabhakaran R, Mariaraj Sivakumar S, Govindan Sadasivam S. Oral administration of oxalate-enriched spinach extract as an improved methodology for the induction of dietary hyperoxaluric nephrocalcinosis in experimental rats. Toxicol Mech Methods 2017; 28:195-204. [DOI: 10.1080/15376516.2017.1388459] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Abhishek Albert
- Department of Biochemistry, Centre for Excellence in Genomics Science, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Vidhi Tiwari
- Department of Biochemistry, Centre for Excellence in Genomics Science, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Eldho Paul
- Department of Biochemistry, Centre for Excellence in Genomics Science, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Sasikumar Ponnusamy
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA
| | - Divya Ganesan
- Department of Biochemistry, Centre for Excellence in Genomics Science, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Rajkumar Prabhakaran
- Department of Biochemistry, Centre for Excellence in Genomics Science, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Selvi Mariaraj Sivakumar
- Department of Biochemistry, Centre for Excellence in Genomics Science, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Selvam Govindan Sadasivam
- Department of Biochemistry, Centre for Excellence in Genomics Science, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| |
Collapse
|
9
|
Kusuma DS, Vanhanen LP, Savage GP. Evaluation of extraction parameters for total oxalate determination in spinach using Design of Experiment analysis. J Food Compost Anal 2016. [DOI: 10.1016/j.jfca.2016.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Nizar SA, Mohd Suah FB. Effect of Room Temperature Ionic Liquid on the Formation of the Complex Oxalate-Sodium Morin-5-Sulfonate-Aluminium(III): Application to the Fluorescence Determination of Oxalate Ion. J Fluoresc 2016; 26:1167-71. [PMID: 27286697 DOI: 10.1007/s10895-016-1845-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/30/2016] [Indexed: 11/29/2022]
Abstract
The effect of room temperature ionic liquid (RTIL) on the formation of the fluorescence ternary complex oxalate-sodium morin-5-sulfonate (NaMSA)-Aluminium(III) has been studied. In weakly acidic medium and in the presence of RTIL, 1-Butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6), total complex formation is achieved as compared with the formation of the binary complex of NaMSA-Aluminium(III). The fluorescence characteristics of the system allowed the establishment of a very sensitive method for the spectrofluorimetric determination of oxalate ion. The ternary complex formed its highest fluorescence signal at 513 nm and excitation at 420 nm. In these conditions, the method produces a detection limit of 0.57 ng mL(-1). The procedure has been satisfactorily applied to the determination of oxalate ion in a vegetal tissue (spinach leaves).
Collapse
Affiliation(s)
- Syaza Atikah Nizar
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Minden, Pulau Pinang, Malaysia
| | - Faiz Bukhari Mohd Suah
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Minden, Pulau Pinang, Malaysia.
| |
Collapse
|
11
|
Paz-Gamboa E, Ramírez-Figueroa E, Vivar-Vera M, Bravo-Delgado H, Cortés-Zavaleta O, Ruiz-Espinosa H, Ruiz-López I. Study of oil uptake during deep-fat frying of Taro (Colocasia esculenta) chips. CYTA - JOURNAL OF FOOD 2015. [DOI: 10.1080/19476337.2015.1010587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Santos J, Oliva-Teles M, Delerue-Matos C, Oliveira M. Multi-elemental analysis of ready-to-eat “baby leaf” vegetables using microwave digestion and high-resolution continuum source atomic absorption spectrometry. Food Chem 2014; 151:311-6. [DOI: 10.1016/j.foodchem.2013.11.083] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Revised: 11/05/2013] [Accepted: 11/14/2013] [Indexed: 11/25/2022]
|
13
|
Welna M, Szymczycha-Madeja A, Zyrnicki W. Applicability of ICP-OES, UV-VIS, and FT-IR Methods for the Analysis of Coffee Products. ANAL LETT 2013. [DOI: 10.1080/00032719.2013.816963] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Ruan QY, Zheng XQ, Chen BL, Xiao Y, Peng XX, Leung DW, Liu EE. Determination of total oxalate contents of a great variety of foods commonly available in Southern China using an oxalate oxidase prepared from wheat bran. J Food Compost Anal 2013. [DOI: 10.1016/j.jfca.2013.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Ghosh Das S, Savage GP. Total and soluble oxalate content of some Indian spices. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2012; 67:186-90. [PMID: 22492273 DOI: 10.1007/s11130-012-0278-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Spices, such as cinnamon, cloves, cardamom, garlic, ginger, cumin, coriander and turmeric are used all over the world as flavouring and colouring ingredients in Indian foods. Previous studies have shown that spices contain variable amounts of total oxalates but there are few reports of soluble oxalate contents. In this study, the total, soluble and insoluble oxalate contents of ten different spices commonly used in Indian cuisine were measured. Total oxalate content ranged from 194 (nutmeg) to 4,014 (green cardamom) mg/100 g DM, while the soluble oxalate contents ranged from 41 (nutmeg) to 3,977 (green cardamom) mg/100 g DM. Overall, the percentage of soluble oxalate content of the spices ranged from 4.7 to 99.1% of the total oxalate content which suggests that some spices present no risk to people liable to kidney stone formation, while other spices can supply significant amounts of soluble oxalates and therefore should be used in moderation.
Collapse
Affiliation(s)
- Sumana Ghosh Das
- Food Group, Agriculture and Life Sciences, Lincoln University, Canterbury, New Zealand
| | | |
Collapse
|
16
|
Johansson S, Savage GP. The availability of soluble oxalates in stir-fried silver beet (Beta vulgaris var. cicla) leaves eaten with yoghurt. Int J Food Sci Technol 2011. [DOI: 10.1111/j.1365-2621.2011.02741.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|