1
|
Zhu Y, Yang Y, Tang Z, Xue T, Chen S, Yang H, Su Z, Xu H. UHPLC-PDA-Q-TOF-MS-α-amylase-FLD activity detection system and molecular docking. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:1457-1471. [PMID: 38741027 DOI: 10.1002/pca.3377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/25/2024] [Accepted: 04/27/2024] [Indexed: 05/16/2024]
Abstract
INTRODUCTION Traditional and some scientific literature document the antidiabetic effects of the Ziziphi Spinosae Semen (ZSS). However, the bioactive compounds of ZSS responsible for the antidiabetic effects are not well known. OBJECTIVES This study aimed to investigate the material basis of the antidiabetic effects of ZSS by inhibiting α-amylase. METHODOLOGY An online analysis platform was established and optimized using an ultra-performance liquid chromatography-photo-diode array-quadrupole-time-of-flight-mass spectrometry-α-amylase-fluorescence detector (UHPLC-PDA-Q-TOF-MS-α-amylase-FLD) system to screen α-amylase inhibitors in ZSS rapidly. The inhibitory effect of these compounds was confirmed by molecular docking screening. and the molecular interactions between α-amylase and active compounds were evaluated, which strongly supported the experimental results. RESULTS Seventy-eight compounds were identified in the ZSS extract, eleven of which were screened to have significant α-amylase binding activity. CONCLUSION This study demonstrated the feasibility of using an established platform to screen for effective components in ZSS, providing a practical method for the rapid screening of potential antidiabetic active ingredients in traditional Chinese medicine.
Collapse
Affiliation(s)
- Yaya Zhu
- Shaanxi Collaborative Innovation Center of Chinese Medicine Resources Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center and College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yuangui Yang
- Shaanxi Collaborative Innovation Center of Chinese Medicine Resources Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center and College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Zhishu Tang
- Shaanxi Collaborative Innovation Center of Chinese Medicine Resources Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center and College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Taotao Xue
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Shizhong Chen
- Shaanxi Collaborative Innovation Center of Chinese Medicine Resources Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center and College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
- School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Haodong Yang
- Shaanxi Collaborative Innovation Center of Chinese Medicine Resources Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center and College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Zenghu Su
- Shaanxi Collaborative Innovation Center of Chinese Medicine Resources Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center and College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Hongbo Xu
- Shaanxi Collaborative Innovation Center of Chinese Medicine Resources Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center and College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
2
|
Du C, Han R, Wu J, Zhao N, Pei X, Qin X, Yan Y. Study on the antidepressive effects and mechanism of raw and fried Ziziphi Spinosae Semen via metabolomics and gut microbiota analysis. Biomed Chromatogr 2024; 38:e5873. [PMID: 38587039 DOI: 10.1002/bmc.5873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/09/2024] [Accepted: 03/14/2024] [Indexed: 04/09/2024]
Abstract
Ziziphi Spinosae Semen (ZSS) and fried ZSS (FZSS) have been used for treating insomnia and depression in China. However, the potential influence of chemical variations on their efficacy remains unclear. This study demonstrated that compared with ZSS, FZSS exhibited an increase in the content of seven compounds, while the fatty oil content decreased. Both ZSS and FZSS exhibited antidepressive effects in a chronic unpredictable mild stress rat model, indicating a synergistic regulation of deficiencies in 5-hydroxytryptamine in the brain and the hyperactivation of severe peripheral inflammation. ZSS demonstrated a superior modulatory effect compared with FZSS, as indicated by integrated pharmacodynamic index, metabolic profile, and relative distance value. The potential mechanism underlying their antidepressive effects involved the modulation of gut microbiota structure to alleviate excessive inflammatory responses and imbalanced tryptophan metabolism. Correlation analysis indicated that the higher fatty oil contents should be comprehensively considered as the main reason for ZSS's superior antidepressive effects, achieved through the regulation of pyroglutamic acid levels.
Collapse
Affiliation(s)
- Chenhui Du
- School of Traditional Chinese Materia Medica, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Rui Han
- School of Traditional Chinese Materia Medica, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Jiang Wu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Ni Zhao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Xiangping Pei
- School of Traditional Chinese Materia Medica, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Yan Yan
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| |
Collapse
|
3
|
Chu Y, Zhang Y, Liu J, Du C, Yan Y. An integrated liver, hippocampus and serum metabolomics based on UPLC-Q-TOF-MS revealed the therapeutical mechanism of Ziziphi Spinosae Semen in p-chlorophenylalanine-induced insomnia rats. Biomed Chromatogr 2024; 38:e5796. [PMID: 38009807 DOI: 10.1002/bmc.5796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/29/2023]
Abstract
Ziziphi Spinosae Semen (ZSS), a well-known herbal medicine for treating insomnia, is popular in not only China but also in Europe, India and Iran. However, its underlying mechanisms remain unclear. In this work, taking the targeted organs of insomnia, the liver and hippocampus, as the objects, a combination metabolomics based on ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) was established to illustrate the abnormality of metabolic characteristics of the liver, hippocampus and serum of p-chlorophenylalanine (PCPA)-induced insomnia rats and to demonstrate the mechanism of ZSS in treating insomnia. The results showed that ZSS could restore the brain cell morphology, decrease the degree of hepatocyte necrosis and regulate the disturbance of neurotransmitters and hormones in insomnia rats. In terms of metabolomics, a total of 33 liver metabolites, 25 hippocampal metabolites and 18 serum metabolites were finally selected as the potential biomarkers and an important pathway of phenylalanine, tyrosine and tryptophan biosynthesis was common in three tissues in PCPA rats. Meanwhile, ZSS significantly reversed the levels of 23 liver metabolites, 15 hippocampal metabolites and 5 serum metabolites. The present study demonstrates the actions of ZSS in treating insomnia by enhancing both cerebral and hepatic functions.
Collapse
Affiliation(s)
- Yingxin Chu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Yinjie Zhang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Jiaxing Liu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Chenhui Du
- School of Traditional Chinese Materia Medica, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Yan Yan
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- Shanxi Dayi Hospital affiliated to Shanxi Medical University, Taiyuan, China
| |
Collapse
|
4
|
Cheng Y, Liu Z, Xu B, Song P, Chao Z. Comprehensive metabolomic variations of hawthorn before and after insect infestation based on the combination analysis of 1H NMR and UPLC-MS. Curr Res Food Sci 2023; 7:100616. [PMID: 37881336 PMCID: PMC10594559 DOI: 10.1016/j.crfs.2023.100616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/25/2023] [Accepted: 10/08/2023] [Indexed: 10/27/2023] Open
Abstract
Hawthorn, the sliced and dried ripe fruits of Crataegus pinnatifida Bge. Var. Major N. E. Br. (Rosaceae), is an edible and medicinal substance with a variety of health-promoting benefits. Hawthorn needs to be stored in warehouses after harvesting to meet people's perennial demand. However, it is easily infested by insects of Plodia interpunctella and Tribolium castaneum during storage, which inevitably leads to poor quality and causes adverse effects on people's health. So far, there has been no report on insect-infested hawthorn. In this study, we analyzed the changes of metabolites in hawthorn before and after insect infestation and screened out potential biomarkers to effectively and quickly detect the occurrence of insect infestation. A combination analysis of 1H nuclear magnetic resonance (NMR) and ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) was used to identify the primary and secondary metabolites. By the comparison of hawthorn and insect-infested hawthorn samples, it was found that the differences were mainly manifested in the content of metabolites. The metabolites of 32 and 1463 were identified by 1H NMR and UPLC-MS analysis, respectively. According to the parameters of VIP >1 and P < 0.05, 10 differential metabolites were screened from 1H NMR analysis. Based on the parameters of VIP >1.0, P < 0.05, and (FC) > 1 or < 1, 47 differential metabolites were screened from UPLC-MS analysis. Therefore, a total of 57 differential metabolites were considered as differential biomarkers. The heat map analysis showed that the content of some differential biomarkers with significant pharmacological activities decreased after insect infestation. Through receiver operating characteristic (ROC) curve assessment, 52 differential biomarkers (6 of 1H NMR analysis and 46 of UPLC-MS analysis) were screened to distinguish whether insect infestation occurred in hawthorn. This is the first report on the changes of metabolites between hawthorn and insect-infested hawthorn and on the screening of differential biomarkers for monitoring insects. These results contributed to evaluate quality of hawthorn and ensure food safety for consumers. It also laid a foundation for further research on the infestation mechanism and safe storage monitoring in hawthorn.
Collapse
Affiliation(s)
- Yunxia Cheng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zhenying Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Bo Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Pingping Song
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zhimao Chao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| |
Collapse
|
5
|
Zhang JB, Li MX, Zhang YF, Qin YW, Li Y, Su LL, Li L, Bian ZH, Lu TL. E-eye, flash GC E-nose and HS-GC-MS combined with chemometrics to identify the adulterants and geographical origins of Ziziphi Spinosae Semen. Food Chem 2023; 424:136270. [PMID: 37207600 DOI: 10.1016/j.foodchem.2023.136270] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/14/2023] [Accepted: 04/27/2023] [Indexed: 05/21/2023]
Abstract
Ziziphi Spinosae Semen (ZSS), a valuable seed food, has faced increasing authenticity issues. In this study, the adulterants and geographical origins of ZSS were successfully identified by electronic eye, flash gas chromatography electronic nose (Flash GC e-nose) and headspace gas chromatography-mass spectrometry (HS-GC-MS). As a result, there were color differences between ZSS and adulterants, mainly represented by the a* value of ZSS was less than adulterants. In ZSS, 29 and 32 compounds were detected by Flash GC e-nose and HS-GC-MS. Spicy, sweety, fruity and herbal were the main flavor of ZSS. Five compounds were determined to be responsible for flavor differences between different geographical origins. In the HS-GC-MS analysis, the relative content of Hexanoic acid was the highest in ZSS from Hebei and Shandong, while 2,4-Decadien-1-ol was the highest in Shaanxi. Overall, this study provided a meaningful strategy for addressing authenticity problems of ZSS and other seed foods.
Collapse
Affiliation(s)
- Jiu-Ba Zhang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ming-Xuan Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yun-Fei Zhang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu-Wen Qin
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lian-Lin Su
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lin Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhen-Hua Bian
- Department of Pharmacy, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi 214071, China.
| | - Tu-Lin Lu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
6
|
Long W, Wang S, Hai C, Chen H, Gu HW, Yin XL, Yang J, Fu H. UHPLC-QTOF-MS-based untargeted metabolomics revealing the differential chemical constituents and its application on the geographical origins traceability of lily bulbs. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
7
|
Yan Y, Liu J, Zhang M, Zhang Y, Shi B, Qin X, Du C. A strategy to explore the quality markers of Ziziphi Spinosae semen by combining metabolic in vivo study with network pharmacology. Biomed Chromatogr 2023; 37:e5530. [PMID: 36264602 DOI: 10.1002/bmc.5530] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 12/15/2022]
Abstract
Ziziphi Spinosae semen (ZSS), the dried and ripe seed of Ziziphus jujube Mill. var. spinosa (Bunge) Hu ex H. F. Chou, has been used as a sedative in China and other Asian countries for over a millennium. However, its quality markers (Q-markers) are not completely clear. In this study, Q-markers selected by a metabolic in vivo study combined with network pharmacology are proposed for ZSS quality control. An UHPLC (ultra-high-performance liquid chromatography)-Q-Orbitrap-MS method was developed to identify or tentatively assign 48 components including 21 flavonoid C-glycosides, 2 flavonoid O-glycosides, 11 dammarane triterpenoid saponins, 13 alkaloids, and 1 other, using a diagnostic product ion filtering strategy in ZSS. Subsequently, 147 metabolites detected from serum, urine, bile, and feces samples of para-chlorophenylalanine-induced insomnia rats treated with ZSS aqueous extracts could be linked to their respective parent compounds, including 27 prototypes. Meanwhile, three metabolic networks of flavonoids, saponins, and alkaloids are preliminarily established and potential metabolic pathways are investigated under the insomnia condition. Finally, 12 key bioactive components against insomnia including magnoflorine, caaverine, coclaurine, norisocorydine, genkwanin, juzinrine, apigenin, jujubogenin, kaempferol-3-O-rutinoside, jujuboside A, jujuboside B, and spinosin with the highest degree values in component-target-pathways network were selected as Q-markers for the quality control of ZSS.
Collapse
Affiliation(s)
- Yan Yan
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Jiaxing Liu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Min Zhang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Yinjie Zhang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Biyun Shi
- Thermo Fisher Scientific (China), Co., Ltd, Beijing, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Chenhui Du
- School of Traditional Chinese Materia Medica, Shanxi University of Chinese Medicine, Taiyuan, China
| |
Collapse
|
8
|
Effect of Different Processing Methods on the Chemical Constituents of Scrophulariae Radix as Revealed by 2D NMR-Based Metabolomics. Molecules 2022; 27:molecules27154687. [PMID: 35897871 PMCID: PMC9331298 DOI: 10.3390/molecules27154687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/04/2022] Open
Abstract
Scrophulariae Radix (SR) is one of the oldest and most frequently used Chinese herbs for oriental medicine in China. Before clinical use, the SR should be processed using different methods after harvest, such as steaming, “sweating”, and traditional fire-drying. In order to investigate the difference in chemical constituents using different processing methods, the two-dimensional (2D) 1H-13C heteronuclear single quantum correlation (1H-13C HSQC)-based metabolomics approach was applied to extensively characterize the difference in the chemical components in the extracts of SR processed using different processing methods. In total, 20 compounds were identified as potential chemical markers that changed significantly with different steaming durations. Seven compounds can be used as potential chemical markers to differentiate processing by sweating, hot-air drying, and steaming for 4 h. These findings could elucidate the change of chemical constituents of the processed SR and provide a guide for the processing. In addition, our protocol may represent a general approach to characterizing chemical compounds of traditional Chinese medicine (TCM) and therefore might be considered as a promising approach to exploring the scientific basis of traditional processing of TCM.
Collapse
|
9
|
Chemical comparison of Astragali Radix by UHPLC/Q-TOF-MS with different growing patterns. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04056-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Li Z, Yang C, Li Z, Sun Y, Lin S, Hu Y. Application and safety evaluation of an anti-aflatoxigenic chitosan pouch containing turmeric essential oil in the storage of traditional Chinese health food. Int J Biol Macromol 2021; 183:1948-1958. [PMID: 34051256 DOI: 10.1016/j.ijbiomac.2021.05.152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/01/2021] [Accepted: 05/23/2021] [Indexed: 12/18/2022]
Abstract
Aflatoxin contamination is one of the most important factors jeopardizing the quality of traditional Chinese health food (TCHF) during storage. Based on our previous work, we investigated the stability of chitosan (CH) films containing turmeric essential oil (TEO) and employed CH-TEO films as inner pouches, then stored them with inoculated Coix seed, nutmeg, and Ziziphi Spinosae Semen (ZSS). We found that the stability of CH-TEO was most affected by high temperature, and these pouches dramatically decreased aflatoxin accumulation and maintained levels of marker components of each TCHF. We found that glycerol tristearat in Coix seed and jujuboside A and spinosin in ZSS were negatively correlated with aflatoxin accumulation. After three months of storage with a CH-TEO pouch, we found little change in marker components contents, but observed that Coix seed had the relative lower sensory characteristics score. In addition, acute and 90-day subchronic toxicity test in Coix seed stored with the largest amount of TEO showed no significant signs of toxicity or treatment-related changes in animals. The present study is the first report on the study of a green, efficient, and low toxicity solution for aflatoxic contamination in TCHF, and provides strong support for its future use.
Collapse
Affiliation(s)
- Zheyu Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of pharmacy, Chengdu University; Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Chen Yang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of pharmacy, Chengdu University
| | - Zhiyi Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of pharmacy, Chengdu University
| | - Yanan Sun
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Shibo Lin
- Chengdu Second People's Hospital, Chengdu 610017, China.
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China.
| |
Collapse
|