1
|
Sharma S, Dedha A, Gupta MM, Singh N, Gautam A, Kumari A. Green and sustainable technologies for extraction of carotenoids from natural sources: a comprehensive review. Prep Biochem Biotechnol 2024; 55:245-277. [PMID: 39427252 DOI: 10.1080/10826068.2024.2402905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
In recent years, driven by increasing consumer demand for natural and healthy convenient foods, the food industry has been shifting from synthetic to natural products. This shift is also reflected in the growing popularity of non-conventional extraction methods for pigments, which are favored for sustainability and environment-friendliness compared to conventional processes. This review aims to investigate the extraction of carotenoids from a variety of natural sources, including marine sources like fungus, microalgae, and crustaceans, as well as widely studied plants like tomatoes and carrots. Additionally, it delves into the recovery of valuable carotenoids from waste products like pomace and peels, highlighting the nutritional and environmental benefits. The review also emphasizes the role of green solvents such limonene, vegetable oils, ionic liquids, supercritical fluids, and natural deep eutectic solvents in effective and ecologically friendly carotenoid extraction. These technologies support the ideas of a circular and sustainable economy in addition to having a smaller negative impact on the environment. Overall, the present study highlights the crucial importance of green extraction technologies in achieving the dual goals of sustainability and public safety.
Collapse
Affiliation(s)
- Surbhi Sharma
- Amity Institute of Biotechnology, Amity University, Noida, India
| | - Anshika Dedha
- Amity Institute of Biotechnology, Amity University, Noida, India
| | - Manju M Gupta
- Sri Aurobindo College, Delhi University, Delhi, India
| | - Nahar Singh
- Council of Scientific and Industrial Research-National Physical Laboratory (CSIR-NPL), Delhi, India
| | - Arvind Gautam
- Council of Scientific and Industrial Research-National Physical Laboratory (CSIR-NPL), Delhi, India
| | - Abha Kumari
- Amity Institute of Biotechnology, Amity University, Noida, India
| |
Collapse
|
2
|
Lin TY, Wu YT, Chang HJ, Huang CC, Cheng KC, Hsu HY, Hsieh CW. Anti-Inflammatory and Anti-Oxidative Effects of Polysaccharides Extracted from Unripe Carica papaya L. Fruit. Antioxidants (Basel) 2023; 12:1506. [PMID: 37627501 PMCID: PMC10451988 DOI: 10.3390/antiox12081506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
This study evaluated the antioxidative and anti-inflammatory activities of polysaccharides extracted from unripe Carica papaya L. (papaya) fruit. Three papaya polysaccharide (PP) fractions, namely PP-1, PP-2, and PP-3, with molecular weights of 2252, 2448, and 3741 kDa, containing abundant xylose, galacturonic acid, and mannose constituents, respectively, were obtained using diethylaminoethyl-Sepharose™ anion exchange chromatography. The antioxidant capacity of the PPs, hydroxyl radical scavenging assay, ferrous ion-chelating assay, and reducing power assay revealed that the PP-3 fraction had the highest antioxidant activity, with an EC50 (the concentration for 50% of the maximal effect) of 0.96 mg/mL, EC50 of 0.10 mg/mL, and Abs700 nm of 1.581 for the hydroxyl radical scavenging assay, ferrous ion-chelating assay, and reducing power assay, respectively. In addition, PP-3 significantly decreased reactive oxygen species production by 45.3%, NF-κB activation by 32.0%, and tumor necrosis factor-alpha and interleukin-6 generation by 33.5% and 34.4%, respectively, in H2O2-induced human epidermal keratinocytes. PP-3 exerts potent antioxidative and anti-inflammatory effects; thus, it is a potential biofunctional ingredient in the cosmetic industry.
Collapse
Affiliation(s)
- Ting-Yun Lin
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City 402202, Taiwan; (T.-Y.L.); (Y.-T.W.); (C.-C.H.)
| | - Yun-Ting Wu
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City 402202, Taiwan; (T.-Y.L.); (Y.-T.W.); (C.-C.H.)
| | - Hui-Ju Chang
- Department of Taiwan Seed Improvement and Propagation Station, Council of Agriculture, Executive Yuan, Taichung City 426017, Taiwan;
| | - Chun-Chen Huang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City 402202, Taiwan; (T.-Y.L.); (Y.-T.W.); (C.-C.H.)
| | - Kuan-Chen Cheng
- Institute of Biotechnology, National Taiwan University, Taipei 10617, Taiwan;
- Graduate Institute of Food Science Technology, National Taiwan University, Taipei 10617, Taiwan
- Department of Optometry, Asia University, Taichung City 413305, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung City 404333, Taiwan
| | - Hsien-Yi Hsu
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China;
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City 402202, Taiwan; (T.-Y.L.); (Y.-T.W.); (C.-C.H.)
- Department of Medical Research, China Medical University Hospital, Taichung City 404333, Taiwan
| |
Collapse
|
3
|
Xia H, Zhou Y, Lin Z, Guo Y, Liu X, Wang T, Wang J, Deng H, Lin L, Deng Q, Lv X, Xu K, Liang D. Characterization and functional validation of β-carotene hydroxylase AcBCH genes in Actinidia chinensis. HORTICULTURE RESEARCH 2022; 9:uhac063. [PMID: 35611182 PMCID: PMC9123235 DOI: 10.1093/hr/uhac063] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/28/2022] [Indexed: 05/06/2023]
Abstract
Carotenoids are the pigment substances of yellow-fleshed kiwifruit, and among them β-cryptoxanthin has only been detected in the brighter yellow-fleshed variety 'Jinshi 1'. β-Carotene hydroxylase (BCH) catalyzes the formation of β-cryptoxanthin and zeaxanthin, but its molecular characteristics and functions have not been fully explained. Here we isolated two β-carotene hydroxylase genes, AcBCH1 and AcBCH2 from kiwifruit (Actinidia chinensis), and their relative expression levels exhibited a close correlation with the content of β-cryptoxanthin. AcBCH1 catalyzed the formation of β-cryptoxanthin when transformed into β-carotene-accumulating yeast cells. Moreover, silenced expression of AcBCH1 in kiwifruit caused decreases in the contents of zeaxanthin, lutein, and β-cryptoxanthin, and an increase in β-carotene content. The content of β-carotene decreased significantly after the AcBCH1/2 genes were overexpressed in tomato. The content of zeaxanthin increased and β-carotene decreased in transgenic kiwifruit seedlings. The results will enrich our knowledge of the molecular mechanisms of carotenoid biosynthesis in kiwifruit.
Collapse
Affiliation(s)
- Hui Xia
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuanjie Zhou
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhiyi Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuqi Guo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinling Liu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Tong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jin Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Honghong Deng
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Lijin Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Qunxian Deng
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiulan Lv
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Kunfu Xu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Dong Liang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
4
|
Montgomery DR, Biklé A. Soil Health and Nutrient Density: Beyond Organic vs. Conventional Farming. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.699147] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Controversy has long surrounded the question of nutritional differences between crops grown organically or using now-conventional methods, with studies dating back to the 1940s showing that farming methods can affect the nutrient density of crops. More recent studies have shown how reliance on tillage and synthetic nitrogen fertilizers influence soil life, and thereby soil health, in ways that can reduce mineral micronutrient uptake by and phytochemical production in crops. While organic farming tends to enhance soil health and conventional practices degrade it, relying on tillage for weed control on both organic and conventional farms degrades soil organic matter and can disrupt soil life in ways that reduce crop mineral uptake and phytochemical production. Conversely, microbial inoculants and compost and mulch that build soil organic matter can increase crop micronutrient and phytochemical content on both conventional and organic farms. Hence, agronomic effects on nutritional profiles do not fall out simply along the conventional vs. organic distinction, making the effects of farming practices on soil health a better lens for assessing their influence on nutrient density. A review of previous studies and meta-studies finds little evidence for significant differences in crop macronutrient levels between organic and conventional farming practices, as well as substantial evidence for the influence of different cultivars and farming practices on micronutrient concentrations. More consistent differences between organic and conventional crops include that conventional crops contain greater pesticide levels, whereas organically grown crops contain higher levels of phytochemicals shown to exhibit health-protective antioxidant and anti-inflammatory properties. Thus, part of the long-running controversy over nutritional differences between organic and conventional crops appears to arise from different definitions of what constitutes a nutrient—the conventional definition of dietary constituents necessary for growth and survival, or a broader one that also encompasses compounds beneficial for maintenance of health and prevention of chronic disease. For assessing the effects of farming practices on nutrient density soil health adds a much needed dimension—the provisioning of micronutrients and phytochemicals that support human health.
Collapse
|
5
|
Lara-Abia S, Welti-Chanes J, Cano MP. Effect of High Hydrostatic Pressure on the Extractability and Bioaccessibility of Carotenoids and Their Esters from Papaya ( Carica papaya L.) and Its Impact on Tissue Microstructure. Foods 2021; 10:2435. [PMID: 34681484 PMCID: PMC8535580 DOI: 10.3390/foods10102435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 11/22/2022] Open
Abstract
High hydrostatic pressure (HHP) is a non-thermal technology widely used in the industry to extend food shelf-life and it has been proven to enhance the extractability of secondary metabolites, such as carotenoids, in plant foods. In this study, fresh-cut papaya pulp of varieties (Sweet Mary, Alicia and Eksotika) from the Canary Islands (Spain) were submitted to the HHP process (pressure: 100, 350 and 600 MPa; time: come-up time (CUT) and 5 min) to evaluate, for the first time, individual carotenoid and carotenoid ester extractability and to assess their bioaccessibility using an in vitro simulated gastrointestinal digestion assay, following the standardized INFOGEST® methodology. In addition, changes in papaya pulp microstructure after HHP treatments and during the different phases of the in vitro digestion were evaluated with optical light microscopy. HPLC-DAD (LC-MS/MS (APCI+)) analyses revealed that HHP treatments increased the carotenoid content, obtaining the highest extractability in pulp of the Sweet Mary papaya variety treated at 350 MPa during 5 min (4469 ± 124 μg/100 g fresh weight) which was an increase of 269% in respect to the HHP-untreated control sample. The highest carotenoid extraction value within each papaya variety among all HHP treatments was observed for (all-E)-lycopene, in a range of 98-1302 μg/100 g fresh weight (23-344%). Light micrographs of HHP-treated pulps showed many microstructural changes associated to carotenoid release related to the observed increase in their content. Carotenoids and carotenoid esters of papaya pulp submitted to in vitro digestion showed great stability; however, their bioaccessibility was very low due to the low content of fatty acids in papaya pulp necessary for the micellarization process. Further studies will be required to improve papaya carotenoid and carotenoid ester bioaccessibility.
Collapse
Affiliation(s)
- Sara Lara-Abia
- Department of Biotechnology and Food Microbiology, Institute of Food Science Research (CIAL) (CSIC-UAM), 28001 Madrid, Spain;
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey 64000, Mexico;
| | - Jorge Welti-Chanes
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey 64000, Mexico;
| | - M. Pilar Cano
- Department of Biotechnology and Food Microbiology, Institute of Food Science Research (CIAL) (CSIC-UAM), 28001 Madrid, Spain;
| |
Collapse
|