1
|
Liu Y, Dar BN, Makroo HA, Aslam R, Martí-Quijal FJ, Castagnini JM, Amigo JM, Barba FJ. Optimizing Recovery of High-Added-Value Compounds from Complex Food Matrices Using Multivariate Methods. Antioxidants (Basel) 2024; 13:1510. [PMID: 39765839 PMCID: PMC11672994 DOI: 10.3390/antiox13121510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
In today's food industry, optimizing the recovery of high-value compounds is crucial for enhancing quality and yield. Multivariate methods like Response Surface Methodology (RSM) and Artificial Neural Networks (ANNs) play key roles in achieving this. This review compares their technical strengths and examines their sustainability impacts, highlighting how these methods support greener food processing by optimizing resources and reducing waste. RSM is valued for its structured approach to modeling complex processes, while ANNs excel in handling nonlinear relationships and large datasets. Combining RSM and ANNs offers a powerful, synergistic approach to improving predictive models, helping to preserve nutrients and extend shelf life. The review emphasizes the potential of RSM and ANNs to drive innovation and sustainability in the food industry, with further exploration needed for scalability and integration with emerging technologies.
Collapse
Affiliation(s)
- Yixuan Liu
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Spain; (Y.L.); (F.J.M.-Q.)
| | - Basharat N. Dar
- Department of Food Technology, Islamic University of Science and Technology, Awantipora 192122, Jammu & Kashmir, India; (B.N.D.); (H.A.M.)
| | - Hilal A. Makroo
- Department of Food Technology, Islamic University of Science and Technology, Awantipora 192122, Jammu & Kashmir, India; (B.N.D.); (H.A.M.)
| | - Raouf Aslam
- Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana 141004, Punjab, India;
| | - Francisco J. Martí-Quijal
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Spain; (Y.L.); (F.J.M.-Q.)
| | - Juan M. Castagnini
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Spain; (Y.L.); (F.J.M.-Q.)
| | - Jose Manuel Amigo
- IKERBASQUE, Basque Society for the Promotion of Science, Plaza Euskadi, 5, 48009 Bilbao, Spain;
- Department of Analytical Chemistry, University of the Basque Country UPV/EHU, Barrio Sarriena S/N, 48940 Leioa, Spain
| | - Francisco J. Barba
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Spain; (Y.L.); (F.J.M.-Q.)
| |
Collapse
|
2
|
Matić M, Stupar A, Pezo L, Đerić Ilić N, Mišan A, Teslić N, Pojić M, Mandić A. Eco-Friendly Extraction: A green approach to maximizing bioactive extraction from pumpkin ( Curcubita moschata L.). Food Chem X 2024; 22:101290. [PMID: 38586223 PMCID: PMC10998083 DOI: 10.1016/j.fochx.2024.101290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/01/2024] [Accepted: 03/12/2024] [Indexed: 04/09/2024] Open
Abstract
The research focused on optimizing the accelerated solvent extraction (ASE) of carotenoids and polyphenols from pumpkin powder. The study optimized accelerated solvent extraction (ASE) of carotenoids and polyphenols from pumpkin powder. Using a mix of standard score (SS) and artificial neural network (ANN) methods, the extraction process was fine-tuned. The ANN model assessed extraction parameters' significance, achieving high predictability for total carotenoid content (TCC), total phenolic content (TPC), and free radical scavenging capacity (DPPH and ABTS methods). The analysis highlighted the most effective extraction at 50 % concentration, 120 °C temperature, 5 min duration, and 2 cycles, yielding high carotenoid and phenolic content (TCC 571.49 µg/g, TPC 7.85 mg GAE/g). HPLC-DAD profiles of the optimized ASE extract confirmed major carotenoids and phenolic compounds. Strong correlations were found between bioactive compounds and antioxidant activity, emphasizing potential health benefits.
Collapse
Affiliation(s)
- Milana Matić
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Alena Stupar
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Lato Pezo
- Institute of General and Physical Chemistry, University of Belgrade, Studentski trg 12/V, 11000 Belgrade, Serbia
| | - Nataša Đerić Ilić
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Aleksandra Mišan
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Nemanja Teslić
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Milica Pojić
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Anamarija Mandić
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| |
Collapse
|
3
|
Rodriguez-Amaya DB, Esquivel P, Meléndez-Martínez AJ. Comprehensive Update on Carotenoid Colorants from Plants and Microalgae: Challenges and Advances from Research Laboratories to Industry. Foods 2023; 12:4080. [PMID: 38002140 PMCID: PMC10670565 DOI: 10.3390/foods12224080] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
The substitution of synthetic food dyes with natural colorants continues to be assiduously pursued. The current list of natural carotenoid colorants consists of plant-derived annatto (bixin and norbixin), paprika (capsanthin and capsorubin), saffron (crocin), tomato and gac fruit lycopene, marigold lutein, and red palm oil (α- and β-carotene), along with microalgal Dunaliella β-carotene and Haematococcus astaxanthin and fungal Blakeslea trispora β-carotene and lycopene. Potential microalgal sources are being sought, especially in relation to lutein, for which commercial plant sources are lacking. Research efforts, manifested in numerous reviews and research papers published in the last decade, have been directed to green extraction, microencapsulation/nanoencapsulation, and valorization of processing by-products. Extraction is shifting from conventional extraction with organic solvents to supercritical CO2 extraction and different types of assisted extraction. Initially intended for the stabilization of the highly degradable carotenoids, additional benefits of encapsulation have been demonstrated, especially the improvement of carotenoid solubility and bioavailability. Instead of searching for new higher plant sources, enormous effort has been directed to the utilization of by-products of the fruit and vegetable processing industry, with the application of biorefinery and circular economy concepts. Amidst enormous research activities, however, the gap between research and industrial implementation remains wide.
Collapse
Affiliation(s)
- Delia B. Rodriguez-Amaya
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil
| | - Patricia Esquivel
- Centro Nacional de Ciencia y Tecnología (CITA), Universidad de Costa Rica, San José 11501, Costa Rica;
- Escuela de Tecnología de Alimentos, Universidad de Costa Rica, San José 11501, Costa Rica
| | | |
Collapse
|
4
|
Lou H, Wang F, Zhao H, Wang S, Xiao X, Yang Y, Wang X. Development and validation of an improved QuEChERS method for the extraction of semi-volatile organic compounds (SVOCs) from complex soils. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4767-4776. [PMID: 37697917 DOI: 10.1039/d3ay01326j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
In order to achieve rapid, sensitive, and high-throughput determination of typical semi-volatile organic compounds (SVOCs) in soil samples, a method for the rapid determination of 63 SVOCs in soil was developed by optimizing and improving the QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) extraction technique in conjunction with gas chromatography-mass spectrometry (GC-MS) analysis. A small amount of soil sample (5.0 g) was vortexed with 10 mL of a mixture of acetone and n-hexane (V/V = 1 : 1) for 2 min, followed by rapid vortex purification and centrifugation using a mixture of copper powder and octadecylsilane (C18) dispersant. The resulting supernatant was then purified through a 0.22 μm filter membrane. The results showed that the 63 SVOCs exhibited good linear relationships within the concentration range of 100-5000 μg L-1, with correlation coefficients (R2) above 0.99. The method detection limit (MDL = 3.3 Sy/m) was lower than 0.050 mg kg-1. At a spike concentration of 1 mg kg-1, the recovery rates of the 63 SVOCs were almost above 70% (n = 7). Compared with the rapid solvent extraction (ASE) method specified in US EPA 3545 standard, this method reduced the organic solvent usage by 14 times and significantly shortened the operation time. Furthermore, this method did not involve any transfer or concentration steps of the extractant during the experimental process, reducing the exposure time of toxic compounds and providing support for the principles of green analytical chemistry. Moreover, in the detection of most compounds in the same batch of contaminated soil, the extraction results obtained by QuEChERS were superior to those obtained by the ASE method, providing evidence for the practical application of this method. This method is rapid, simple, accurate, requires a small sample volume, and causes minimal environmental pollution. It provides a high-throughput detection method for the rapid screening of SVOCs in soil.
Collapse
Affiliation(s)
- Hongbo Lou
- Environmental Testing and Experiment Center, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Fujia Wang
- Environmental Testing and Experiment Center, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
- School of Environmental Science and Engineering, Qilu University of Technology, Jinan 250353, China
| | - Hangchen Zhao
- Environmental Testing and Experiment Center, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Sufang Wang
- Environmental Testing and Experiment Center, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Xinxin Xiao
- Environmental Testing and Experiment Center, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Yanmei Yang
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Xiaowei Wang
- Environmental Testing and Experiment Center, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
5
|
Islam K, Rawoof A, Kumar A, Momo J, Ahmed I, Dubey M, Ramchiary N. Genetic Regulation, Environmental Cues, and Extraction Methods for Higher Yield of Secondary Metabolites in Capsicum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37289974 DOI: 10.1021/acs.jafc.3c01901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Capsicum (chili pepper) is a widely popular and highly consumed fruit crop with beneficial secondary metabolites such as capsaicinoids, carotenoids, flavonoids, and polyphenols, among others. Interestingly, the secondary metabolite profile is a dynamic function of biosynthetic enzymes, regulatory transcription factors, developmental stage, abiotic and biotic environment, and extraction methods. We propose active manipulable genetic, environmental, and extraction controls for the modulation of quality and quantity of desired secondary metabolites in Capsicum species. Specific biosynthetic genes such as Pun (AT3) and AMT in the capsaicinoids pathway and PSY, LCY, and CCS in the carotenoid pathway can be genetically engineered for enhanced production of capsaicinoids and carotenoids, respectively. Generally, secondary metabolites increase with the ripening of the fruit; however, transcriptional regulators such as MYB, bHLH, and ERF control the extent of accumulation in specific tissues. The precise tuning of biotic and abiotic factors such as light, temperature, and chemical elicitors can maximize the accumulation and retention of secondary metabolites in pre- and postharvest settings. Finally, optimized extraction methods such as ultrasonication and supercritical fluid method can lead to a higher yield of secondary metabolites. Together, the integrated understanding of the genetic regulation of biosynthesis, elicitation treatments, and optimization of extraction methods can maximize the industrial production of secondary metabolites in Capsicum.
Collapse
Affiliation(s)
- Khushbu Islam
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Abdul Rawoof
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ajay Kumar
- Department of Plant Sciences, School of Biological Sciences, Central University of Kerala, Kasaragod 671316, Kerala, India
| | - John Momo
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ilyas Ahmed
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Meenakshi Dubey
- Department of Biotechnology, Delhi Technological University, New Delhi 110042, India
| | - Nirala Ramchiary
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
6
|
Peng J, Abdulla R, Li Y, Liu XY, He F, Xin XL, Aisa HA. Potential anti-diabetic components of Apocynum venetum L. flowers: Optimization, chemical characterization and quality evaluation. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.104930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|