1
|
Xu W, Huang J, Wang P, Yang Y, Fu S, Ying Z, Zhou Z. Using widely targeted metabolomics profiling to explore differences in constituents of three Bletilla species. Sci Rep 2024; 14:23873. [PMID: 39396087 PMCID: PMC11470930 DOI: 10.1038/s41598-024-74204-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/24/2024] [Indexed: 10/14/2024] Open
Abstract
Bletilla striata has been used in traditional Chinese medicine for thousands of years to treat a variety of health diseases. Currently, metabolic causes of differences in medicinal values are unknown, due to the lack of a large-scale and comprehensive investigation of metabolites in Bletilla species. In order to gain a better understanding of the major chemical constituents responsible for the medicinal value, this study aimed to explore the metabolomic differences among three Bletilla species (Bletilla striata: Bs, Bletilla ochracea: Bo and Bletilla formosana: Bf). There were 258 different metabolites between 'Bo' and 'Bf', the contents of 109 metabolites had higher abundance, while 149 metabolites showed less accumulation. There were 165 different metabolites between the 'Bs' and 'Bf', content of 72 metabolites was increased and content of 93 metabolites was decreased. There were 239 different metabolites between the 'Bs' and 'Bo', content of 145 metabolites was increased and content of 94 metabolites was decreased. In the Bo_vs_Bf, Bs_vs_Bf and Bs_vs_Bo groups, the major differential categories were flavonoids, phenolic acids, organic acids and alkaloids. Moreover, the differential metabolites were clustered into clear and distinct profiles via K-means analysis. In addition, the major differential categories were flavonoids, phenolic acids, organic acids and alkaloids. The 'Flavonoid biosynthesis' (ko00941) and 'Phenylalanine metabolism' (ko00360) pathways were significantly enriched in Bo_vs_Bf, Bs_vs_Bf and Bs_vs_Bo comparisons. These results clarify the metabolomics in different Bletilla species, as well as providing basis for the phamaceutical value of novel species of Bletilla.
Collapse
Affiliation(s)
- Wan Xu
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, 325005, China
| | - Jian Huang
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, 325005, China
| | - Peilong Wang
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, 325005, China
| | - Yanping Yang
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, 325005, China
| | - Shuangbin Fu
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, 325005, China
| | - Zhen Ying
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, 325005, China
| | - Zhuang Zhou
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, 325005, China.
| |
Collapse
|
2
|
Wang A, Li Z, Wang J, Liu H, Fu X, Chen Y, Guo H. Quantification and holistic quality evaluation of Wulingzhi extract by UHPLC-Q-Orbitrap-HRMS coupled with chemometric approaches. Biomed Chromatogr 2023; 37:e5726. [PMID: 37651744 DOI: 10.1002/bmc.5726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/09/2023] [Accepted: 08/01/2023] [Indexed: 09/02/2023]
Abstract
The excreta of Trogopterus xanthipes ("Wulingzhi" in Chinese, WLZ) is a well-known traditional Chinese medicine. It has been used for centuries to treat amenorrhea, menstruation and postpartum abdominal pain. However, a systematic quality study on WLZ chemical markers has yet to be conducted. This study aimed to establish an ultra-high-performance liquid chromatography coupled with a hybrid quadruple extraction Orbitrap high-resolution mass spectrometry (UHPLC-Q-Orbitrap-HRMS) method for the simultaneous quantitative determination of 20 compounds in 53 batches of WLZ; the method rapidly and sensitively determined the 20 plant- or animal-derived compounds. Firstly, the proposed approach was validated to satisfy the method's linearity, detection limits, precision, repeatability, stability and accuracy. Subsequently, multivariate analysis was used to identify correlations between the samples and feed, processing and regions. Finally, this method was used to further identify chemical markers for quality control in combination with chemometrics. This is the first report on pinusolide, betaine, hippuric acid, 4-oxorentinoic acid, 15-methoxypinusolidic acid and 4-oxoisotrentinoin in WLZ; the quality of WLZ became homogeneous after processing with vinegar (V-WLZ). Moreover, we screened for potential component markers, including uridine, allantoin, amentoflavone, hippuric acid, 3,4-dihydroxybenzoic acid, pinusolide, quercetin and kaempferol. These results were practical and efficient for the chemical clarification of WLZ and V-WLZ.
Collapse
Affiliation(s)
- Anqi Wang
- School of Pharmaceutical Sciences, Peking University, Beijing, China
- NMPA Key Laboratory for Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine), Beijing Key Laboratory of Analysis and Evaluation on Chinese Medicine, Beijing Institute for Drug Control, Beijing, China
| | - Zheng Li
- NMPA Key Laboratory for Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine), Beijing Key Laboratory of Analysis and Evaluation on Chinese Medicine, Beijing Institute for Drug Control, Beijing, China
| | - Jinghui Wang
- NMPA Key Laboratory for Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine), Beijing Key Laboratory of Analysis and Evaluation on Chinese Medicine, Beijing Institute for Drug Control, Beijing, China
| | - Haolong Liu
- Department of Pharmacy, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xintong Fu
- NMPA Key Laboratory for Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine), Beijing Key Laboratory of Analysis and Evaluation on Chinese Medicine, Beijing Institute for Drug Control, Beijing, China
| | - Yougen Chen
- NMPA Key Laboratory for Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine), Beijing Key Laboratory of Analysis and Evaluation on Chinese Medicine, Beijing Institute for Drug Control, Beijing, China
| | - Hongzhu Guo
- NMPA Key Laboratory for Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine), Beijing Key Laboratory of Analysis and Evaluation on Chinese Medicine, Beijing Institute for Drug Control, Beijing, China
| |
Collapse
|
3
|
Blockage of Autophagy Increases Timosaponin AIII-Induced Apoptosis of Glioma Cells In Vitro and In Vivo. Cells 2022; 12:cells12010168. [PMID: 36611961 PMCID: PMC9818637 DOI: 10.3390/cells12010168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Timosaponin AIII (TSAIII), a saponin isolated from Anemarrhena asphodeloides and used in traditional Chinese medicine, exerts antitumor, anti-inflammatory, anti-angiogenesis, and pro-apoptotic activity on a variety of tumor cells. This study investigated the antitumor effects of TSAIII and the underlying mechanisms in human glioma cells in vitro and in vivo. TSAIII significantly inhibited glioma cell viability in a dose- and time-dependent manner but did not affect the growth of normal astrocytes. We also observed that in both glioma cell lines, TSAIII induces cell death and mitochondrial dysfunction, consistent with observed increases in the protein expression of cleaved-caspase-3, cleaved-caspase-9, cleaved-PARP, cytochrome c, and Mcl-1. TSAIII also activated autophagy, as indicated by increased accumulation of the autophagosome markers p62 and LC3-II and the autolysosome marker LAMP1. LC3 silencing, as well as TSAIII combined with the autophagy inhibitor 3-methyladenine (3MA), increased apoptosis in GBM8401 cells. TSAIII inhibited tumor growth in xenografts and in an orthotopic GBM8401 mice model in vivo. These results demonstrate that TSAIII exhibits antitumor effects and may hold potential as a therapy for glioma.
Collapse
|
4
|
Endurance of COVID 19 in wastewater, natural prescription and antiviral medication for the analysis of COVID 19 and its effects on the development of new antiseptic strategies. TOTAL ENVIRONMENT RESEARCH THEMES 2022. [PMCID: PMC9398943 DOI: 10.1016/j.totert.2022.100010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The continuous worldwide pandemic of COVID-19 brought about by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a public health emergency of international concern, which was formally announced by the World Health Organization (WHO). The antivirals utilized to restrict the spread of virus and the procedures for the recognition of SARS-COV-2 in wastewater has been reviewed. A main tool Wastewater-based epidemiology (WBE) played a notable role in tracking the spread of corona virus in large community. This review signifies the upgraded clinical impacts and components of Traditional Chinese Medicine (TCM), the function of various antiviral drugs against COVID 19 and the role of human covid to exist in the habitat and the viability countered; with specific spotlight on the advancement of latest strategies to assess the action of latest antiseptic-disinfectants on infections.
Collapse
|
5
|
Wang CF, Cai XR, Chi YN, Miao XY, Yang JY, Xiao BK, Huang RQ. Analgesic Activity of Jin Ling Zi Powder and Its Single Herbs: A Serum Metabonomics Study. Chin J Integr Med 2022; 28:1007-1014. [PMID: 33881717 DOI: 10.1007/s11655-021-3277-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2019] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To compare the analgesic effect of Jin Ling Zi Powder (JLZ) and its two single herbs. METHODS The hot plate method was used to induce pain. Totally 36 mice were randomly divided into 6 groups by a complete random design, including control, model, aspirin (ASP, 0.14 g/kg body weight), JLZ (14 g/kg body weight), Corydalis yanhusuo (YHS, 14 g/kg body weight), and Toosendan Fructus (TF, 14 g/kg body weight) groups, 6 mice in each group. The mice in the control and model groups were given the same volume of saline, daily for 2 consecutive weeks. At 30, 60, 90, and 120 min after the last administration, the pain threshold of mice in each group was measured, and the improvement rate of pain threshold was calculated. Serum endogenous metabolites were analyzed by gas chromatography-mass spectrometry (GC-MS). RESULTS There was no statistical difference in pain threshold among groups before administration (P>0.05). After 2 weeks of administration, compared with the model group, the pain threshold in JLZ, YHS, TF and ASP groups were increased to varying degrees (P<0.05). JLZ had the best analgesic effect and was superior to YHS and TF groups. A total of 14 potential biomarkers were screened in serum data analysis and potential biomarkers levels were all reversed to different degrees after the treatment with JLZ and its single herbs. These potential biomarkers were mainly related to glyoxylate and dicarboxylate metabolism, glycine, serine and threonine metabolism, valine, leucine and isoleucine biosynthesis, aminoacyl-tRNA biosynthesis and inositol phosphate metabolism. CONCLUSIONS The analgesic mechanism of JLZ and YHS was mainly due to the combination of glycine and its receptor, producing post-synaptic potential, reducing the excitability of neurons, and weakening the afferent effect of painful information.
Collapse
Affiliation(s)
- Cui-Fang Wang
- Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing, 100850, China
- School of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xiao-Rong Cai
- Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing, 100850, China
- School of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yan-Ni Chi
- Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing, 100850, China
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330000, China
| | - Xiao-Yao Miao
- Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Jian-Yun Yang
- Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Bing-Kun Xiao
- Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Rong-Qing Huang
- Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing, 100850, China.
- School of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
6
|
Liu E, Gao H, Zhao Y, Pang Y, Yao Y, Yang Z, Zhang X, Wang Y, Yang S, Ma X, Zeng J, Guo J. The potential application of natural products in cutaneous wound healing: A review of preclinical evidence. Front Pharmacol 2022; 13:900439. [PMID: 35935866 PMCID: PMC9354992 DOI: 10.3389/fphar.2022.900439] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/28/2022] [Indexed: 11/22/2022] Open
Abstract
Under normal circumstances, wound healing can be summarized as three processes. These include inflammation, proliferation, and remodeling. The vast majority of wounds heal rapidly; however, a large percentage of nonhealing wounds have still not been studied significantly. The factors affecting wound nonhealing are complex and diverse, and identifying an effective solution from nature becomes a key goal of research. This study aimed to highlight and review the mechanisms and targets of natural products (NPs) for treating nonhealing wounds. The results of relevant studies have shown that the effects of NPs are associated with PI3K-AKT, P38MAPK, fibroblast growth factor, MAPK, and ERK signaling pathways and involve tumor growth factor (TNF), vascular endothelial growth factor, TNF-α, interleukin-1β, and expression of other cytokines and proteins. The 25 NPs that contribute to wound healing were systematically summarized by an inductive collation of the six major classes of compounds, including saponins, polyphenols, flavonoids, anthraquinones, polysaccharides, and others, which will further direct the attention to the active components of NPs and provide research ideas for further development of new products for wound healing.
Collapse
Affiliation(s)
- E Liu
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongjin Gao
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - YiJia Zhao
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yaobing Pang
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yejing Yao
- Neijiang Hospital of Traditional Chinese Medicine, Neijiang, China
| | - Zhengru Yang
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xueer Zhang
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - YanJin Wang
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Siming Yang
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiao Ma, ; Jinhao Zeng, ; Jing Guo,
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiao Ma, ; Jinhao Zeng, ; Jing Guo,
| | - Jing Guo
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiao Ma, ; Jinhao Zeng, ; Jing Guo,
| |
Collapse
|
7
|
Ohkura N. Potential applications of Chinese herbal medicines with hemostatic properties. Drug Discov Ther 2022; 16:112-117. [PMID: 35753799 DOI: 10.5582/ddt.2022.01037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Various herbal medicines with hemostatic properties have been applied for centuries to accelerate hemostasis and control bleeding. However, the mechanisms of action and active constituents remain unknown. This report provides an overview of current clinical hemostatic agents and their disadvantages, then focuses on the clinical value of Chinese herbal medicines with unique hemostatic features that modern medicines lack. A comprehensive review of hemostatic agents derived from Chinese herbal medicines and their potential medical applications is also presented.
Collapse
Affiliation(s)
- Naoki Ohkura
- Laboratory of Host Defense, Department of Medical and Pharmaceutical Sciences, School of Pharma-Sciences, Teikyo University, Japan
| |
Collapse
|
8
|
Vitale S, Colanero S, Placidi M, Di Emidio G, Tatone C, Amicarelli F, D’Alessandro AM. Phytochemistry and Biological Activity of Medicinal Plants in Wound Healing: An Overview of Current Research. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113566. [PMID: 35684503 PMCID: PMC9182061 DOI: 10.3390/molecules27113566] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 12/12/2022]
Abstract
Wound healing is a complicated process, and the effective management of wounds is a major challenge. Natural herbal remedies have now become fundamental for the management of skin disorders and the treatment of skin infections due to the side effects of modern medicine and lower price for herbal products. The aim of the present study is to summarize the most recent in vitro, in vivo, and clinical studies on major herbal preparations, their phytochemical constituents, and new formulations for wound management. Research reveals that several herbal medicaments have marked activity in the management of wounds and that this activity is ascribed to flavonoids, alkaloids, saponins, and phenolic compounds. These phytochemicals can act at different stages of the process by means of various mechanisms, including anti-inflammatory, antimicrobial, antioxidant, collagen synthesis stimulating, cell proliferation, and angiogenic effects. The application of natural compounds using nanotechnology systems may provide significant improvement in the efficacy of wound treatments. Increasing the clinical use of these therapies would require safety assessment in clinical trials.
Collapse
Affiliation(s)
- Stefania Vitale
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.V.); (M.P.); (G.D.E.); (C.T.); (F.A.)
| | - Sara Colanero
- Department of Biosciences, University of Milan, Via Giovanni Celoria 26, 20133 Milan, Italy;
| | - Martina Placidi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.V.); (M.P.); (G.D.E.); (C.T.); (F.A.)
| | - Giovanna Di Emidio
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.V.); (M.P.); (G.D.E.); (C.T.); (F.A.)
| | - Carla Tatone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.V.); (M.P.); (G.D.E.); (C.T.); (F.A.)
| | - Fernanda Amicarelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.V.); (M.P.); (G.D.E.); (C.T.); (F.A.)
| | - Anna Maria D’Alessandro
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.V.); (M.P.); (G.D.E.); (C.T.); (F.A.)
- Correspondence:
| |
Collapse
|
9
|
Li D, Long Y, Yu S, Shi A, Wan J, Wen J, Li X, Liu S, Zhang Y, Li N, Zheng C, Yang M, Shen L. Research Advances in Cardio-Cerebrovascular Diseases of Ligusticum chuanxiong Hort. Front Pharmacol 2022; 12:832673. [PMID: 35173614 PMCID: PMC8841966 DOI: 10.3389/fphar.2021.832673] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/28/2021] [Indexed: 12/22/2022] Open
Abstract
Cardio-cerebrovascular diseases (CVDs) are a serious threat to human health and account for 31% of global mortality. Ligusticum chuanxiong Hort. (CX) is derived from umbellifer plants. Its rhizome, leaves, and fibrous roots are similar in composition but have different contents. It has been used in Japanese, Korean, and other traditional medicine for over 2000 years. Currently, it is mostly cultivated and has high safety and low side effects. Due to the lack of a systematic summary of the efficacy of CX in the treatment of CVDs, this article describes the material basis, molecular mechanism, and clinical efficacy of CX, as well as its combined application in the treatment of CVDs, and has been summarized from the perspective of safety. In particular, the pharmacological effect of CX in the treatment of CVDs is highlighted from the point of view of its mechanism, and the complex mechanism network has been determined to improve the understanding of CX's multi-link and multi-target therapeutic effects, including anti-inflammatory, antioxidant, and endothelial cells. This article offers a new and modern perspective on the impact of CX on CVDs.
Collapse
Affiliation(s)
- Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Long
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuang Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ai Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinyan Wan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoqiu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Songyu Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yulu Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuan Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ming Yang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Lin Shen
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
10
|
Li X, Wang S, Fan Y, Zhou Z, Xu S, Zhou P, Zhou J, Wang R. Peanut Rotation and Flooding Induce Rhizobacteriome Variation With Opposing Influences on the Growth and Medicinal Yield of Corydalis yanhusuo. FRONTIERS IN PLANT SCIENCE 2022; 12:779302. [PMID: 35069636 PMCID: PMC8782247 DOI: 10.3389/fpls.2021.779302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Corydalis yanhusuo, a precious herb of the Papaveraceae family, is widely used in multiple traditional Chinese medicines for the treatment of many painful conditions, and its medicinal part is the dried tuber. Yet how to improve this plant's medicinal yield as well as its economic efficiency remains a key problem in its cultivation. The planting of C. yanhusuo in rotation with peanut (Arachis hypogaea L.) aims to improve land utilization efficiency, but the total production of tubers is severely reduced relative to fields without rotation. However, an increased yield was observed in C. yanhusuo plants grown in previously flooded fields (HR field) compared to the ones grown in the fields that had been used to cultivate peanut (PL field) or in fields without rotation or flooding (N field). Based on these phenomena, in this study, we explored the potential factors responsible for the altered growth/yield of C. yanhusuo under different field conditions. Soil physicochemical properties and the diversity and community of rhizobacteriome of C. yanhusuo were both analyzed. By testing several soil physicochemical properties, we found that the cation exchange capacity (CEC), soil organic matter (SOM), total nitrogen (TN), and pH value differed significantly among these three types of fields. 16S rRNA amplicon sequencing revealed stark differences in the composition, diversity, and potential functions of the bacterial community in the rhizosphere of C. yanhusuo plants grown in field with the peanut rotation or flooding. Notably, the Acidobacteria were enriched in the HR field, while Actinobacteria were enriched in the PL field. More importantly, further analysis showed that changed soil physicochemical properties could be one reason for why the rhizospheric bacterial community has changed; hence, soil physicochemical properties might also be affecting plant performance indirectly by regulating the rhizospheric bacterial community. The RDA analysis distinguished CEC as the most important soil physicochemical property influencing the structure and composition of the C. yanhusuo rhizobacteriome. In summary, our results suggest peanut rotation- and flooding-induced soil physicochemical properties changes would further impact the rhizobacteriome of C. yanhusuo albeit differentially, culminating in opposite effects upon the plant growth and medicinal yield of C. yanhusuo.
Collapse
Affiliation(s)
- Xiaodan Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Songfeng Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Yating Fan
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Zhe Zhou
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Sheng Xu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Penglei Zhou
- Jiangsu Jiangtong Agricultural Science and Technology Development Co., Ltd., Huaian, China
| | - Jiayu Zhou
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Ren Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| |
Collapse
|
11
|
Zhang X, Jiang L, Li X, Zheng L, Dang R, Liu X, Wang X, Chen L, Zhang YS, Zhang J, Yang D. A Bioinspired Hemostatic Powder Derived from the Skin Secretion of Andrias davidianus for Rapid Hemostasis and Intraoral Wound Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2101699. [PMID: 34817129 DOI: 10.1002/smll.202101699] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/20/2021] [Indexed: 06/13/2023]
Abstract
High-performance hemostasis has become increasingly essential in treating various traumas. However, available topical hemostats still have various drawbacks and side-effects. Herein, hemostatic powders derived from the skin secretion of Andrias davidianus (SSAD) with controllable particle size are prepared using feasible frozen-ball milling following lyophilization for hemorrhage-control. Scanning electron microscopy, rheometry, and Brunauer-Emmett-Teller test are used to characterize the coagulation-promoting surface topography, rheological properties, and porous structure of the SSAD particles. The blood-coagulation assays showed that the SSAD powders can induce blood-absorption in a particle size-dependent manner. Particle sizes of the SSAD powders larger than 200 µm and smaller than 800 µm greatly affect the blood-clotting rate. Associated with the thromboelastography (TEG) and amino acid/protein composition analyses, the accessibility and diffusion of blood are mainly dependent on the wettability, adhesivity, and clotting factors of the SSAD particles. Rapid hemostasis in vivo further involves three hemorrhage models (liver, femoral artery, and tail) as well as an oral wound model, which suggest favorable hemostatic and simultaneous regenerative effects of the SSAD hemostatic powder. Considering its degradability and good biocompatibility, SSAD can be an optimal candidate for a new class of inexpensive, natural, and promising hemostatic and wound-dressing agent.
Collapse
Affiliation(s)
- Ximu Zhang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, China
| | - Lin Jiang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, China
| | - Xian Li
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, China
| | - Liwen Zheng
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, China
| | - Ruyi Dang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, China
| | - Xiang Liu
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, China
| | - Xiaoping Wang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, China
| | - Liling Chen
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, China
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Jixi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Deqin Yang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, China
| |
Collapse
|
12
|
Jiang S, Wang M, Jiang L, Xie Q, Yuan H, Yang Y, Zafar S, Liu Y, Jian Y, Li B, Wang W. The medicinal uses of the genus Bletilla in traditional Chinese medicine: A phytochemical and pharmacological review. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114263. [PMID: 34144194 DOI: 10.1016/j.jep.2021.114263] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Different orchids are important in traditional medicine, and species belonging to the genus Bletilla are important. Bletilla species have been used for thousands of years in Traditional Chinese Medicine (TCM) for the treatment of several health disorders, such as gastrointestinal disorders, peptic ulcer, lung disorders, and traumatic bleeding etc. AIM OF THIS REVIEW: This review aims to provide a systematic overview and objective analysis of Bletilla species and to find the probable relationship between their traditional use, chemical constituents, and pharmacological activities, while assessing their therapeutic potential in treatment of different human diseases. MATERIALS AND METHODS Relevant literatures on Bletilla species have been collected using the keywords "Bletilla", "phytochemistry", and "pharmacology" in scientific databases, such as "PubMed", "Scifinder", "The Plant List", "Elsevier", "China Knowledge Resource Integrated databases (CNKI)", "Google Scholar", "Baidu Scholar", and other literature sources, etc. RESULTS: This review indicates the isolation and identification of over 261 compounds from this genus, till December 2020. These chemical isolates belong to the stilbenes (bibenzyls and phenanthrenes), flavonoids, triterpenoids, steroids, simple phenolics, and glucosyloxybenzyl 2-isobutylmalates classes of compounds. These compounds have been reported to be characteristically distributed in Bletilla striata (Thunb.) Rchb. f. (BS), Bletilla ochracea Schltr. (BO), and Bletilla formosana (Hayata) Schltr. (BF). The crude extracts and pure compounds derived from the three Bletilla species have reportedly exhibited a wide spectrum of in vitro and in vivo pharmacological effects, such as hemostatic, anti-inflammatory, anti-tumor, and anti-microbial activities. As a Traditional Chinese Medicine (TCM), Bletilla species or preparations containing Bletilla species have been used for the treatment of epistaxis, gastrointestinal bleeding, cough and hemoptysis, gastric and duodenal ulcer, and traumatic injuries. Thus, Bletilla species have proven potential both in traditional uses and scientific studies. CONCLUSIONS Pharmacological studies have validated the use of Bletilla species in the traditional medicine, especially hemorrhagic diseases. Polysaccharides and stilbenes are the major bioactive chemical constituents of Bletilla genus according to the literatures. However, the mechanism of action of these molecules is yet to be studied. In addition, a detailed comparative analysis of the phytochemistry and biological activities of the three Bletilla species (BS, BO and BF) is highly recommended for understanding their ethnopharmacological uses and applications in clinics. Clinical toxicity tests on BS have been found to be negative, but it can't be used with Aconitum carmichaeli in traditional uses. Furthermore, not many reports are present in the literature regarding the conservation of Bletilla species.
Collapse
Affiliation(s)
- Sai Jiang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Mengyun Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Lin Jiang
- Research Center for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200000, PR China
| | - Qian Xie
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Hanwen Yuan
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Yupei Yang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Salman Zafar
- Institute of Chemical Sciences, University of Peshawar, Peshawar, 25120, Pakistan
| | - Yang Liu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Yuqing Jian
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Bin Li
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China.
| |
Collapse
|
13
|
Liu YC, Lee WT, Liang CC, Lo TS, Hsieh WC, Lin YH. Author's reply: Beneficial effect of Bletilla striata extract solution on zymosan-induced interstitial cystitis in rat. Neurourol Urodyn 2021; 40:2059-2060. [PMID: 34487560 DOI: 10.1002/nau.24783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 11/07/2022]
Affiliation(s)
- Yi-Ching Liu
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Wei-Ting Lee
- Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan
| | - Ching-Chung Liang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tsia-Shu Lo
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wu-Chiao Hsieh
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Hao Lin
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
14
|
Liu YC, Lee WT, Liang CC, Lo TS, Hsieh WC, Lin YH. Beneficial effect of Bletilla striata extract solution on zymosan-induced interstitial cystitis in rat. Neurourol Urodyn 2021; 40:763-770. [PMID: 33604897 DOI: 10.1002/nau.24630] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/07/2021] [Accepted: 01/22/2021] [Indexed: 01/09/2023]
Abstract
AIMS Interstitial cystitis (IC) is a chronic pain syndrome that is characterized by suprapubic pain upon bladder filling. Bletilla striata, a well-known traditional Chinese herb with established efficacy in wound healing and anti-inflammation, was hypothesized to improve the symptoms of IC possibly though forming a physical barrier that could isolate the bladder tissue from irritants. This study was conducted to evaluate the beneficial effects of intravesical treatment with B. striata extract solution (BSES) on visceral pain and bladder function of rats with zymosan-induced IC. METHODS Thirty female rats were randomly divided into control group, zymosan-induced cystitis rats treated with normal saline (Z + NS), and zymosan-induced cystitis rats treated with BSES (Z + BSES). All rats underwent evaluation for abdominal withdrawal reflex (AWR) scores to assess visceral hypersensitivity, cystometrography, and electromyogram (EMG) of both external urethral sphincter and bladder detrusor. Data were analyzed by one way analysis of variance. RESULTS The Z + NS group had an increased visceral hypersensitivity as compared to control group. Rats treated with BSES (Z + BSES group) had decreased AWR scores and amplitude of bladder detrusor-EMG. Besides, BSES treatment improved overactive bladder with significant effects on the extend of micturition interval and increase of storage of urine. CONCLUSIONS Intravesical instillation of BSES can significantly alleviate zymosan-induced visceral hypersensitivity and bladder overactivity associated with IC. This study suggested that intravesical instillation with BSES might be a promising treatment for IC.
Collapse
Affiliation(s)
- Yi-Ching Liu
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wei-Ting Lee
- Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan
| | - Ching-Chung Liang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tsia-Shu Lo
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wu-Chiao Hsieh
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Hao Lin
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
15
|
Quality Evaluation of Corydalis yanhusuo by High-Performance Liquid Chromatography Fingerprinting Coupled with Multicomponent Quantitative Analysis. Sci Rep 2020; 10:4996. [PMID: 32193434 PMCID: PMC7081204 DOI: 10.1038/s41598-020-61951-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/05/2020] [Indexed: 12/21/2022] Open
Abstract
Corydalis Rhizoma is the tuber of Corydalis yanhusuo W. T. Wang, which has been long used in traditional Chinese medicine. Herein, the quality of C. yanhusuo samples collected from 23 regions of three provinces in China is evaluated through high-performance liquid chromatography fingerprinting coupled with similarity, hierarchical clustering, and principal component analyses. Sample similarities are evaluated according to the State Food and Drug Administration requirements by selection of 18 characteristic chromatographic fingerprint peaks and are found to vary between 0.455 and 0.999. Moreover, common patterns of a typical local variety of C. yanhusuo sourced in the Panan County are established. The obtained results show that the combination of quantitative analysis and chromatographic fingerprint analysis can be readily utilized for quality control purposes, offering a comprehensive strategy for quality evaluation of C. yanhusuo and related products.
Collapse
|
16
|
Shen HS, Chiang JH, Hsiung NH. Adjunctive Chinese Herbal Products Therapy Reduces the Risk of Ischemic Stroke Among Patients With Rheumatoid Arthritis. Front Pharmacol 2020; 11:169. [PMID: 32194408 PMCID: PMC7064546 DOI: 10.3389/fphar.2020.00169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 02/07/2020] [Indexed: 12/11/2022] Open
Abstract
We performed a retrospective cohort study to investigate the association between the risk of ischemic stroke (IS) and the use of Chinese herbal products (CHP) in combination with western medicine (WM) among patients with rheumatoid arthritis (RA). The data were sourced from the registry for beneficiaries, inpatient and ambulatory care claims, and Registry for Catastrophic Illness from the National Health Insurance Research Database (NHIRD) in Taiwan between 1997 and 2011. Patients, who were newly diagnosed with RA between 1997 and 2010, were classified as the CHP group or non-CHP group depending on the presence of absence the adjunctive use of CHP following a diagnosis of RA. A total of 4,148 RA patients were in both the CHP and non-CHP groups after 1:1 matching. Patients in the CHP group had a significantly lower risk of IS compared to patients in the non-CHP group (adjusted hazard ratio [aHR], 0.67; 95% confidence interval [CI], 0.52-0.86). In the CHP group, patients who used CHP for more than 30 days had a lower risk of IS than their counterparts (aHR: 0.61, 95% CI: 0.40-0.91). Gui-Zhi-Shao-Yao-Zhi-Mu-Tang, Shu-Jin-Huo-Xie-Tang, and Du-Huo-Ji-Sheng-Tang might be associated with a lower risk of IS. Finally, the use of CHP in combination with WM was associated with a decreased risk of IS in patients with RA, especially among those who had used CHP for more than 30 days. A further randomized control trial is required to clarify the casual relationship between these results.
Collapse
Affiliation(s)
- Hsuan-Shu Shen
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan
| | - Jen-Huai Chiang
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan.,College of Medicine, China Medical University, Taichung, Taiwan
| | | |
Collapse
|
17
|
Study on Structure Activity Relationship of Natural Flavonoids against Thrombin by Molecular Docking Virtual Screening Combined with Activity Evaluation In Vitro. Molecules 2020; 25:molecules25020422. [PMID: 31968628 PMCID: PMC7024217 DOI: 10.3390/molecules25020422] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/17/2020] [Accepted: 01/18/2020] [Indexed: 12/24/2022] Open
Abstract
Thrombin, a key enzyme of the serine protease superfamily, plays an integral role in the blood coagulation cascade and thrombotic diseases. In view of this, it is worthwhile to establish a method to screen thrombin inhibitors (such as natural flavonoid-type inhibitors) as well as investigate their structure activity relationships. Virtual screening using molecular docking technique was used to screen 103 flavonoids. Out of this number, 42 target compounds were selected, and their inhibitory effects on thrombin assayed by chromogenic substrate method. The results indicated that the carbon-carbon double bond group at the C2, C3 sites and the carbonyl group at the C4 sites of flavones were essential for thrombin inhibition, whereas the methoxy and O-glycosyl groups reduced thrombin inhibition. Noteworthy, introduction of OH groups at different positions on flavonoids either decreased or increased anti-thrombin potential. Myricetin exhibited the highest inhibitory potential against thrombin with an IC50 value of 56 μM. Purposively, the established molecular docking virtual screening method is not limited to exploring flavonoid structure activity relationships to anti-thrombin activity but also usefully discovering other natural active constituents.
Collapse
|
18
|
Simultaneous Determination of Three Bioactive Constituents from Bletilla striata by UPLC-MS/MS and Application of the Technique to Pharmacokinetic Analyses. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:8942512. [PMID: 31772602 PMCID: PMC6854942 DOI: 10.1155/2019/8942512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/11/2019] [Accepted: 09/27/2019] [Indexed: 11/17/2022]
Abstract
Bletilla striata has been widely used as a valuable hemostatic agent for thousands of years due to the high levels of bioactive constituents it contains. Here, we used a sensitive ultrahigh-performance liquid chromatography-tandem mass spectroscopy (UPLC-MS/MS) method for the simultaneous determination of three major active ingredients of the B. striata extract, namely, α-isobutylmalic acid, gymnoside I, and militarine in rat plasma. The three major active ingredients were determined using the multiple reaction monitoring (MRM) mode at m/z 189 ⟶ 129 for α-isobutylmalic acid, m/z 457.2 ⟶ 285.1 for gymnoside I, m/z 725.3 ⟶ 457.2 for militarine, and m/z 417.0 ⟶ 267.0 for the IS puerarin. All calibration curves showed good linearity (R2 ≥ 0.999) over the concentration range with the lower limit of quantification between 0.015 and 0.029 μg/mL. The relative standard deviations of intraday and interday measurements were less than 15%, and the method was accurate within 93.3–100.4%. The extraction recovery was 92.65–100.98%, and no matrix effect was observed. The results indicated that after oral administration of B. striata in rats, the Tmax of α-isobutylmalic acid was significantly longer than that of gymnoside I and militarine and the mean residence time and area under the curve of α-isobutylmalic acid and gymnoside I in rats were significantly higher than those of militarine. Moreover, the blood concentration-time curve of α-isobutylmalic acid showed double peaks, suggesting that α-isobutylmalic acid could exhibit the phenomenon of enterohepatic circulation or metabolic conversion. We also explored some of the pharmacokinetic characteristics of three ingredients from B. striata extract in vivo, and the data obtained may provide a basis for the further investigation of B. striata.
Collapse
|
19
|
Xu D, Pan Y, Chen J. Chemical Constituents, Pharmacologic Properties, and Clinical Applications of Bletilla striata. Front Pharmacol 2019; 10:1168. [PMID: 31736742 PMCID: PMC6838137 DOI: 10.3389/fphar.2019.01168] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 09/11/2019] [Indexed: 01/08/2023] Open
Abstract
Bletilla striata is a plant from the Orchidaceae family that has been employed as a traditional Chinese medicine (TCM) for thousands of years in China. Here, we briefly review the published studies of the last 30 years that were related to chemical constituents, pharmacologic activities, and clinical applications of B. striata. Approximately 158 compounds have been extracted from B. striata tubers with clarified molecular structures that were classified as glucosides, bibenzyls, phenanthrenes, quinones, biphenanthrenes, dihydrophenanthrenes, anthocyanins, steroids, triterpenoids, and phenolic acids. These chemicals support the pharmacological properties of hemostasis and wound healing, and also exhibit anti-oxidation, anti-cancer, anti-viral, and anti-bacterial activities. Additionally, various clinical trials conducted on B. striata have demonstrated its marked activities as an embolizing and mucosa-protective agent, and its application for use in novel biomaterials, quality control, and toxicology. It also has been widely used as a constituent of many preparations in TCM formulations, but because there are insufficient studies on its clinical properties, its efficacy and safety cannot be established from a scientific point of view. We hope that this review will provide reference for further research and development of this unique plant.
Collapse
Affiliation(s)
- Delin Xu
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
| | - Yinchi Pan
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
| | - Jishuang Chen
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
20
|
Polysaccharides from tubers of Bletilla striata: Physicochemical characterization, formulation of buccoadhesive wafers and preliminary study on treating oral ulcer. Int J Biol Macromol 2019; 122:1035-1045. [DOI: 10.1016/j.ijbiomac.2018.09.050] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 09/04/2018] [Accepted: 09/10/2018] [Indexed: 11/24/2022]
|
21
|
Ren F, Wang Y, Xu Z, Li Y, Xin T, Zhou J, Qi Y, Wei X, Yao H, Song J. DNA barcoding of Corydalis, the most taxonomically complicated genus of Papaveraceae. Ecol Evol 2019; 9:1934-1945. [PMID: 30847083 PMCID: PMC6392370 DOI: 10.1002/ece3.4886] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/02/2018] [Accepted: 12/06/2018] [Indexed: 02/06/2023] Open
Abstract
The genus Corydalis is recognized as one of the most taxonomically challenging plant taxa. It is mainly distributed in the Himalaya-Hengduan Mountains, a global biodiversity hotspot. To date, no effective solution for species discrimination and taxonomic assignment in Corydalis has been developed. In this study, five nuclear and chloroplast DNA regions, ITS, ITS2, matK, rbcL, and psbA-trnH, were preliminarily assessed based on their ability to discriminate Corydalis to eliminate inefficient regions, and the three regions showing good performance (ITS, ITS2 and matK) were then evaluated in 131 samples representing 28 species of 11 sections of four subgenera in Corydalis using three analytical methods (NJ, ML, MP tree; K2P-distance and BLAST). The results showed that the various approaches exhibit different species identification power and that BLAST shows the best performance among the tested approaches. A comparison of different barcodes indicated that among the single barcodes, ITS (65.2%) exhibited the highest identification success rate and that the combination of ITS + matK (69.6%) provided the highest species resolution among all single barcodes and their combinations. Three Pharmacopoeia-recorded medicinal plants and their materia medica were identified successfully based on the ITS and ITS2 regions. In the phylogenetic analysis, the sections Thalictrifoliae, Sophorocapnos, Racemosae, Aulacostigma, and Corydalis formed well-supported separate lineages. We thus hypothesize that the five sections should be classified as an independent subgenus and that the genus should be divided into three subgenera. In this study, DNA barcoding provided relatively high species discrimination power, indicating that it can be used for species discrimination in this taxonomically complicated genus and as a potential tool for the authentication of materia medica belonging to Corydalis.
Collapse
Affiliation(s)
- Feng‐Ming Ren
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences, Peking Union Medical CollegeBeijingChina
- Chongqing Institute of Medicinal Plant Cultivation, Research and Utilization on Characteristic Biological Resources of Sichuan and Chongqing Co‐construction LabChinese Medicine Breeding and Evaluation Engineering Technology Research Center of ChongqingChongqingChina
| | - Ying‐Wei Wang
- Beijing Botanical Garden, Institute of BotanyChinese Academy of SciencesBeijingChina
| | - Zhi‐Chao Xu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences, Peking Union Medical CollegeBeijingChina
| | - Ying Li
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences, Peking Union Medical CollegeBeijingChina
| | - Tian‐Yi Xin
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences, Peking Union Medical CollegeBeijingChina
| | - Jian‐Guo Zhou
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences, Peking Union Medical CollegeBeijingChina
| | - Yao‐Dong Qi
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences, Peking Union Medical CollegeBeijingChina
| | - Xue‐Ping Wei
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences, Peking Union Medical CollegeBeijingChina
| | - Hui Yao
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences, Peking Union Medical CollegeBeijingChina
| | - Jing‐Yuan Song
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences, Peking Union Medical CollegeBeijingChina
| |
Collapse
|
22
|
Shang Y, Lu S, Chen Y, Sun X. Chinese herbal medicines for the treatment of non-structural abnormal uterine bleeding in perimenopause: A systematic review and a meta-analysis. Complement Ther Med 2018; 41:252-260. [DOI: 10.1016/j.ctim.2018.09.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 01/13/2023] Open
|
23
|
Han FY, Song XY, Chen JJ, Yao GD, Song SJ. Timosaponin AIII: A novel potential anti-tumor compound from Anemarrhena asphodeloides. Steroids 2018; 140:125-130. [PMID: 30296545 DOI: 10.1016/j.steroids.2018.09.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 08/30/2018] [Accepted: 09/27/2018] [Indexed: 12/18/2022]
Abstract
Timosaponin AIII, a major steroidal saponin found in Anemarrhena asphodeloides Bge., which has been widely used as anti-pyretic, anti-diabetic, anti-inflammatory, anti-platelet aggregator and anti-depressant agents in traditional Chinese medicine. Recent pharmacological study showed that timosaponin AIII had potent cytotoxicity, which was potential to be developed as an anticancer agent, however the molecular mechanism underlying the anticancer activity has not been fully elucidated. This review aims to give a systematic summary of the study of timosaponin AIII to reveal its anti-tumor activities by investigating invasion and migration, apoptosis, autophagy and reversing multi-drug resistance. Furthermore, we also make an overview of the mechanisms identified till now. These meaningful findings may provide novel insights on exploiting timosaponin AIII as a new anti-tumor agent.
Collapse
Affiliation(s)
- Feng-Ying Han
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xiao-Yu Song
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Jing-Jie Chen
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Guo-Dong Yao
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| | - Shao-Jiang Song
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| |
Collapse
|
24
|
Weng Q, Cai X, Zhang F, Wang S. Fabrication of self-assembled Radix Pseudostellariae protein nanoparticles and the entrapment of curcumin. Food Chem 2018; 274:796-802. [PMID: 30373011 DOI: 10.1016/j.foodchem.2018.09.059] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 07/26/2018] [Accepted: 09/10/2018] [Indexed: 12/31/2022]
Abstract
Simulating the process of traditional Chinese medicine decoction, Radix Pseudostellariae protein (RPP)-based nanoparticles were constructed by combining heat treatment with pH adjustment in succession. The formed nanoparticles were characterized as homogeneously dispersed sphere within 100 nm in diameter. With curcumin as a drug model, the potential application of RPP as a nanocarrier was studied. Curcumin could combine to RPP through hydrophobic interaction and quench the intrinsic fluorescence of RPP. Results of X-ray diffraction revealed that the crystal formation of curcumin was suppressed after the formation of nanocomplexes. In addition, the curcumin-loaded nanocomplexes exhibited good thermal stability and the light stability of curcumin was significantly improved. The curcumin-loaded nanocomplexes had stronger reducing power than free curcumin, which displayed additive effect between curcumin and RPP. In summary, the obtained RPP nanoparticles are potential to become new drug delivery carriers in food field and pharmaceutical applications for the encapsulation of hydrophobic components.
Collapse
Affiliation(s)
- Qingxia Weng
- College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Xixi Cai
- College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Fang Zhang
- College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, People's Republic of China.
| | - Shaoyun Wang
- College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, People's Republic of China.
| |
Collapse
|
25
|
Discovery of novel antagonists on β2-adrenoceptor from natural products using a label-free cell phenotypic assay. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:1411-1420. [DOI: 10.1007/s00210-018-1555-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 08/15/2018] [Indexed: 10/28/2022]
|
26
|
Quantitative and qualitative analyses of cytotoxic triterpenoids in the rhizomes of Anemone raddeana using HPLC and HPLC-ESI-Q/TOF-MS. J Food Drug Anal 2018; 26:1113-1121. [PMID: 29976404 PMCID: PMC9303036 DOI: 10.1016/j.jfda.2018.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 01/10/2018] [Accepted: 01/22/2018] [Indexed: 11/30/2022] Open
Abstract
Anemone raddeana Regel, a Traditional Chinese Medicine, has been demonstrated to possess cytotoxicity and anti-inflammatory activities. The purpose of this study is to establish analytical methods to identify and quantify the major active constituents in Anemone raddeana. A high-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (HPLC-ESI-Q/TOF-MS) was used to identify the components in the title plant material. To quantify the major components, a HPLC-UV method was developed and validated. The results showed that 37 compounds were identified based on the MS data and retention times. The contents of eight main bioactive compounds were determined by HPLC simultaneously. These methods could be used to effectively evaluate the quality of A. raddeana and provide a valuable reference for further study. In addition, the cytotoxicity activity of the different fractions of A. raddeana was determined. Hederacolchiside A1 (f) showed promising activity against ten human cancer cell lines with IC50 values from 0.29 to 3.48 μM.
Collapse
|
27
|
Gu X, Huang J, Zhang L, Zhang Y, Wang CZ, Sun C, Yao D, Li F, Chen L, Yuan CS. Efficient discovery and capture of new neuronal nitric oxide synthase-postsynaptic density protein-95 uncouplers from herbal medicines using magnetic molecularly imprinted polymers as artificial antibodies. J Sep Sci 2018; 40:3522-3534. [PMID: 28704580 DOI: 10.1002/jssc.201700595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 06/29/2017] [Accepted: 06/29/2017] [Indexed: 12/11/2022]
Abstract
In the scope of stroke treatment, new neuronal nitric oxide synthase-postsynaptic density protein-95 uncouplers from herbal medicines were discovered and captured. To do so, highly selective magnetic molecularly imprinted polymers with a core-shell structure were prepared as artificial antibodies. According to the results of computational simulations, we designed and synthesized various polymers with varying amounts and types of template, functional monomer, cross-linker, and solvent. Characterization and performance tests revealed that the most appropriate artificial antibodies showed uniform spherical morphologies, large adsorption capacities, fast-binding kinetics, high selectivity, and quick separation. These artificial antibodies were then used as sorbents for dispersive magnetic solid-phase extraction coupled with high-performance liquid chromatography and mass spectrometry to capture and identify structural analogs to ZL006 from extracts of Scutellariae radix, Psoraleae fructus, and Trifolium pratense. Furthermore, according to the neuroprotective effect and coimmunoprecipitation test, Baicalein, Neobavaisoflavone, Corylifol A, and Biochanin A can be the potential uncouplers of neuronal nitric oxide synthase-postsynaptic density protein-95. Therefore, this present study contributes valuable information for the discovery of neuronal nitric oxide synthase-postsynaptic density protein-95 uncouplers from herbal medicines.
Collapse
Affiliation(s)
- Xiaoli Gu
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Jiaojiao Huang
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Lei Zhang
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Yu Zhang
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Chong-Zhi Wang
- Tang Center for Herbal Medicine Research, and Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL, USA
| | - Chenghong Sun
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Dandan Yao
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Fei Li
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Lina Chen
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research, and Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL, USA
| |
Collapse
|
28
|
Development and Validation of a HPLC-ESI-MS/MS Method for Simultaneous Quantification of Fourteen Alkaloids in Mouse Plasma after Oral Administration of the Extract of Corydalis yanhusuo Tuber: Application to Pharmacokinetic Study. Molecules 2018; 23:molecules23040714. [PMID: 29561801 PMCID: PMC6017933 DOI: 10.3390/molecules23040714] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 12/14/2022] Open
Abstract
The tuber of Corydalis yanhusuo is a famous traditional Chinese medicine and found to have potent pharmacological effects, such as antinociceptive, antitumor, antibacterial, anti-inflammatory, and anti-depressive activities. Although there are several methods to be developed for the analysis and detection of the bioactive ingredients’ alkaloids, so far, only few prominent alkaloids could be quantified, and in vitro and in vivo changes of comprehensive alkaloids after oral administration are still little known. In this study, we first developed a simple and sensitive high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) method to quantify the comprehensive alkaloids of extracts of C. yanhusuo in mouse plasma, using nitidine chloride as an internal standard. As results, at least fourteen alkaloids, including an aporphine (oxoglaucine), a protopine (protopine), five tertiary alkaloids (corydaline, tetrahydroberberine, tetrahydropalmatine, tetrahydrocolumbamine, and tetrahydrocoptisine) and seven quaternary alkaloids (columbamine, palmatine, berberine, epiberberine, coptisine, jatrorrhizine, and dehydrocorydaline) could be well quantified simultaneously in mouse plasma. The lower limits of quantification were greater than, or equal to, 0.67 ng/mL, and the average matrix effects ranged from 96.4% to 114.3%. The mean extraction recoveries of quality control samples were over 71.40%, and the precision and accuracy were within the acceptable limits. All the analytes were shown to be stable under different storage conditions. Then the established method was successfully applied to investigate the pharmacokinetics of these alkaloids after oral administration of the extract of Corydalis yanhusuo in mice. To the best of our knowledge, this is the first document to report the comprehensive and simultaneous analyses of alkaloids of C. yanhusuo in mouse plasma. It was efficient and useful for comprehensive pharmacokinetic and metabolomic analyses of these complex alkaloids after drug administration.
Collapse
|
29
|
Wang XY, Ding X, Yuan YF, Zheng LY, Cao Y, Zhu ZY, Zhang GQ, Chai YF, Chen XF, Hong ZY. Comprehensive two-dimensional APTES-decorated MCF7-cell membrane chromatographic system for characterizing potential anti-breast-cancer components from Yuanhu-Baizhi herbal medicine pair. J Food Drug Anal 2017; 26:823-833. [PMID: 29567254 PMCID: PMC9322241 DOI: 10.1016/j.jfda.2017.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/21/2017] [Accepted: 11/21/2017] [Indexed: 12/17/2022] Open
Abstract
Rhizoma corydalis and Radix Angelicae Dahurica (Yuanhu–Baizhi) herbal medicine pair has been used for thousands of years and has been reported to be potentially active in recent cancer therapy. But the exact active components or fractions remain unclear. In this study, a new comprehensive two-dimensional (2D) 3-aminopropyltriethoxysilane (APTES)-decorated MCF7-cell membrane chromatography (CMC)/capcell-C18 column/time-of-flight mass spectrometry system was established for screening potential active components and clarifying the active fraction of Yuanhu–Baizhi pair. APTES was modified on the surface of silica, which can provide an amino group to covalently link cell membrane fragments with the help of glutaraldehyde in order to improve the stability and column life span of the MCF7 CMC column. The comprehensive 2D MCF7-CMC system showed good separation and identification abilities. Our screen results showed that the retention components are mainly from the alkaloids in Yuanhu (12 compounds) and the coumarins (10 compounds) in Baizhi, revealing the active fractions of Yuanhu–Baizhi herbal medicine pair. Oxoglaucine, protopine, berberine, osthole, isopimpinellin and palmitic acid were selected as typical components to test the effects on cell proliferation and their IC50 were calculated as 38.17 μM, 29.45 μM, 45.42 μM, 132.7 μM, 156.8 μM and 90.5 μM respectively. Cell apoptosis assay showed that the drug efficacy was obtained mainly through inducing cell apoptosis. Furthermore, a synergistic assay results demonstrated that oxoglaucine (representative of alkaloids from Yuanhu) and isopimpinellin (representative of coumarins from Baizhi) showed significant synergistic efficacy with GFT, indicating that these components may act on other membrane receptors. The proposed 2D CMC system could also be equipped with other cells for further applications. Besides, the follow-up in-vitro experimental strategy using cell proliferation assay, cell apoptosis assay and synergistic assay proved to be a practical way to confirm the active fractions of herbal medicine.
Collapse
Affiliation(s)
- Xiao-Yu Wang
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai 200433, China
| | - Xuan Ding
- Department of Pharmacy & Medical Appliance, Hangzhou Sanatorium of PLA, Hangzhou, Zhejiang 310000, China
| | - Yong-Fang Yuan
- Department of Pharmacy, Shanghai 9th People's Hospital, No. 280 Mohe Road, Shanghai 201999, China
| | - Le-Yi Zheng
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai 200433, China
| | - Yan Cao
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai 200433, China
| | - Zhen-Yu Zhu
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai 200433, China
| | - Guo-Qing Zhang
- Department of Pharmacy, Eastern Hepatobiliary Surgery Hospital, No. 225 Changhai Road, Shanghai 200438, China
| | - Yi-Feng Chai
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai 200433, China
| | - Xiao-Fei Chen
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai 200433, China.
| | - Zhan-Ying Hong
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai 200433, China.
| |
Collapse
|
30
|
Bletilla striata Micron Particles Function as a Hemostatic Agent by Promoting Rapid Blood Aggregation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:5820405. [PMID: 28386291 PMCID: PMC5366200 DOI: 10.1155/2017/5820405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/21/2017] [Indexed: 02/05/2023]
Abstract
The human body cannot control blood loss without treatment. Available hemostatic agents are ineffective at treating cases of severe bleeding and are expensive or raise safety concerns. Bletilla striata serve as an inexpensive, natural, and promising alternative. However, no detailed studies on its hemostatic approach have been performed. The aim of this study was to examine the hemostatic effects of B. striata Micron Particles (BSMPs) and their hemostatic mechanisms. We prepared and characterized BSMPs of different size ranges and investigated their use as hemostatic agent. BSMPs of different size ranges were characterized by scanning electron microscope. In vitro coagulation studies revealed BSMP-blood aggregate formation via stereoscope and texture analyzers. In vivo studies based on rat injury model illustrated the BSMP capabilities under conditions of hemostasis. Compared to other BSMPs of different size ranges, BSMPs of 350–250 μm are most efficient in hemostasis. As powder sizes decrease, the degree of aggregation between particles and hemostatic BSMP effects declines. The BSMP in contact with a bleeding surface locally forms a visible particle/blood aggregate as a physical barrier that facilitates hemostasis. Considering the facile preparation, low cost, and long shelf life of B. striata, BSMPs offer great potential as mechanisms of trauma treatment.
Collapse
|
31
|
Gao D, Pang JY, Zhang CE, Li CY, Tu C, Zhang HZ, Niu M, Xiong Y, Xiao XH, Zhao KJ, Gao WW, Wang JB. Poria Attenuates Idiosyncratic Liver Injury Induced by Polygoni Multiflori Radix Praeparata. Front Pharmacol 2016; 7:386. [PMID: 27803670 PMCID: PMC5067826 DOI: 10.3389/fphar.2016.00386] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/03/2016] [Indexed: 12/31/2022] Open
Abstract
The hepatotoxicity induced by Polygoni Multiflori Radix Praeparata (PM) has aroused great concern throughout the world. Hence, it is worthwhile to perform studies on the detoxification with the combined use of medicinal herbs based on the compatibility theory of traditional Chinese medicine. In this work, the rat model of PM/LPS-induced idiosyncratic liver injury was used. The effects of Poria, Licorice, and Panax notoginseng on rats of PM/LPS-induced liver injury were investigated respectively, hoping to find the most effective herbal medicine to reduce the hepatotoxicity. According to results of biochemical and histological tests, PM could induce the idiosyncratic hepatotoxicity of rats which presented modest inflammation triggered by non-injurious dose of lipopolysaccharide (LPS). We also found that the combined use of Poria and PM in the ratio of 1:2 could significantly ameliorate the PM/LPS-induced liver injury and systemic inflammation. Furthermore, UPLC/QTOF-MS-based metabolomics was performed to identify possible biomarkers and underlying biological pathways. Ten metabolites were expressed differentially among LPS, PM/LPS, and detoxification-treated groups in terms of PCA and OPLS-DA analysis, which could be potential biomarkers. MetaboAnalyst and pathway enrichment analysis revealed that alterations of these metabolites were primarily involved in three pathways: arginine and proline metabolism, primary bile acid biosynthesis and sphingolipid metabolism. This research provides systematic experimental evidences for the hepatoprotective effect of Poria against PM/LPS-induced liver injury for the first time. And these findings may help better understand the underlying mechanisms of pathophysiologic changes in PM/LPS-induced liver injury.
Collapse
Affiliation(s)
- Dan Gao
- Institute of Medicinal Plant Development, Chinese Academy of Medical SciencesBeijing, China; China Military Institute of Chinese Medicine, 302 Military HospitalBeijing, China
| | - Jing-Yao Pang
- Pharmacy Department, Beijing Luhe Hospital Affiliated to Capital Medical UniversityBeijing, China; Department of Traditional Chinese Medicine, Beijing Friendship Hospital Affiliated to Capital Medical UniversityBeijing, China
| | - Cong-En Zhang
- China Military Institute of Chinese Medicine, 302 Military Hospital Beijing, China
| | - Chun-Yu Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical SciencesBeijing, China; China Military Institute of Chinese Medicine, 302 Military HospitalBeijing, China
| | - Can Tu
- China Military Institute of Chinese Medicine, 302 Military Hospital Beijing, China
| | - Hai-Zhu Zhang
- China Military Institute of Chinese Medicine, 302 Military Hospital Beijing, China
| | - Ming Niu
- China Military Institute of Chinese Medicine, 302 Military Hospital Beijing, China
| | - Yin Xiong
- Kunming University of Science and Technology Kunming, China
| | - Xiao-He Xiao
- Integrative Medicine Center, 302 Military Hospital Beijing, China
| | - Kui-Jun Zhao
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital Affiliated to Capital Medical University Beijing, China
| | - Wei-Wei Gao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences Beijing, China
| | - Jia-Bo Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical SciencesBeijing, China; China Military Institute of Chinese Medicine, 302 Military HospitalBeijing, China
| |
Collapse
|