1
|
Nath LR, B Gowda SG, Roberts TH, Gowda D, Khoddami A, Hui SP. Nontargeted Lipidomics of Sorghum Grain Reveals Novel Fatty Acid Esters of Hydroxy Fatty Acids and Cultivar Differences in Lipid Profiles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20690-20703. [PMID: 39230960 DOI: 10.1021/acs.jafc.4c05919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Sorghum, a globally grown gluten-free cereal, is used mainly as an animal feed in developed countries regardless of its potential for human consumption. In this study, we utilized nontargeted lipidomics to thoroughly analyze, compare, and characterize whole-grain lipids in six sorghum cultivars (cv) grown in a single field trial in Australia: Buster, Bazley, Cracker, Liberty, MR43, and Tiger. In total, 194 lipid molecular species representing five major lipid classes were identified. Multivariate analysis unveiled distinct lipid profiles among the cultivars. The most distinct lipid profile belonged to cv. MR43. The lower ω-6 to ω-3 ratio and optimal P/S ratio in cv. Bazley reflect this as a valuable source of balanced essential fatty acids in the diet. The novel bioactive lipids known as FAHFAs (fatty acid esters of hydroxy fatty acids) were identified and characterized in sorghum grains. These findings further emphasize the potential of whole-grain sorghum as a basis for new health-promoting food products.
Collapse
Affiliation(s)
- Lipsa Rani Nath
- Graduate School of Global Food Resources, Hokkaido University, Kita-9, Nishi-9, Kita-Ku, Sapporo 060-0809, Japan
| | - Siddabasave Gowda B Gowda
- Graduate School of Global Food Resources, Hokkaido University, Kita-9, Nishi-9, Kita-Ku, Sapporo 060-0809, Japan
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan
| | - Thomas H Roberts
- School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW 2006, Australia
- Sydney Institute of Agriculture, University of Sydney, Everleigh, NSW 2015, Australia
| | - Divyavani Gowda
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan
| | - Ali Khoddami
- School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW 2006, Australia
- Sydney Institute of Agriculture, University of Sydney, Everleigh, NSW 2015, Australia
| | - Shu-Ping Hui
- Graduate School of Global Food Resources, Hokkaido University, Kita-9, Nishi-9, Kita-Ku, Sapporo 060-0809, Japan
| |
Collapse
|
2
|
Nguyen AT, Althwab SA, Qiu H, Zbasnik R, Urrea C, Carr TP, Schlegel V. Great Northern Beans (Phaseolus vulgaris L.) Lower Cholesterol in Hamsters Fed a High-Saturated-Fat Diet. J Nutr 2022; 152:2080-2087. [PMID: 35511604 DOI: 10.1093/jn/nxac102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/14/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Dietary interventions for high cholesterol, a primary risk factor for cardiovascular disease, are generally considered before prescribing drugs. OBJECTIVE This study investigated the effects of whole Great Northern beans (wGNBs) and their hull (hGNB) incorporated into a high-saturated-fat (HSF) diet on cholesterol markers and hepatic/small intestinal genes involved in cholesterol regulation. METHODS Each of the 4 groups of 11 male golden Syrian hamsters at 9 wk old were fed a normal-fat [NF; 5% (wt:wt) of soybean oil], HSF [5% (wt:wt) of soybean oil + 10% (wt:wt) of coconut oil], HSF+5% (wt:wt) wGNB, or HSF+0.5% (wt:wt) hGNB diet for 4 wk. Cholesterol markers and expression of genes involved in cholesterol metabolism and absorption were analyzed from plasma, liver, intestinal, and fecal samples. Data were analyzed by 1-factor ANOVA and Pearson correlations. RESULTS Compared with the HSF group, the HSF+wGNB group had 62% and 85% lower plasma and liver cholesterol and 3.6-fold and 1.4-fold greater fecal excretion of neutral sterol and bile acid, respectively (P ≤ 0.05). The HSF+hGNB group had 54% lower plasma triglycerides (P < 0.001) and 53% lower liver esterified cholesterol (P = 0.0002) than the HSF group. Compared with the HSF group, the expression of small intestinal Niemann-Pick C1 like 1 (Npc1l1), acyl-coenzyme A:cholesterol acyltransferase 2 (Acat2), and ATP binding cassette transporter subfamily G member 5 (Abcg5) were 75%, 70%, and 49% lower, respectively, and expression of hepatic 3-hydroxy-3-methylglutaryl CoA reductase (Hmgr) was 11.5-fold greater in the HSF+wGNB group (P ≤ 0.05). CONCLUSIONS Consumption of wGNBs resulted in lower cholesterol concentration in male hamsters fed an HSF diet by promoting fecal cholesterol excretion, most likely caused by Npc1l1 and Acat2 suppression. The hGNB may partially contribute to the cholesterol-lowering effect of the wGNBs.
Collapse
Affiliation(s)
- An T Nguyen
- Department of Food Science and Technology, University of Nebraska-Lincoln, NE, USA.,Faculty of Agriculture and Forestry, Dalat University, Dalat, Vietnam
| | - Sami A Althwab
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, NE, USA.,Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah, Al-Qassim, Saudi Arabia
| | - Haowen Qiu
- Department of Food Science and Technology, University of Nebraska-Lincoln, NE, USA
| | - Richard Zbasnik
- Department of Food Science and Technology, University of Nebraska-Lincoln, NE, USA
| | - Carlos Urrea
- Department of Agronomy and Horticulture, Panhandle Research and Extension Center, University of Nebraska-Lincoln, Scottsbluff, NE, USA
| | - Timothy P Carr
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, NE, USA
| | - Vicki Schlegel
- Department of Food Science and Technology, University of Nebraska-Lincoln, NE, USA
| |
Collapse
|
3
|
Gourgouta M, Athanassiou CG, Arthur FH. Susceptibility of Four Different Sorghum Varieties to Infestation by the Khapra Beetle. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:1373-1379. [PMID: 33783525 DOI: 10.1093/jee/toab018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Indexed: 06/12/2023]
Abstract
In this study, we evaluated the susceptibility of four different sorghum varieties to infestation by the khapra beetle, Trogoderma granarium Everts (Coleoptera: Dermestidae), as compared with wheat, which served as a 'control' commodity. In population growth assays, there was preference for population development on wheat compared to the different sorghum varieties. In contrast, there were no significant differences in total population development among the four varieties of sorghum. However, the proportion of immature stages (larvae, pupae) in relation to the adult stage varied significantly among the different varieties. Moreover, significant differences were noted among the commodities tested regarding the final weight decrease, as well as the amount of frass and kernel damage. Our study clearly demonstrates noticeable differences in the susceptibility of the varieties to T. granarium infestation. These results show that this species can develop on different varieties of sorghum, and variety selection should be further considered in a host-plant resistance-based management program for T. granarium.
Collapse
Affiliation(s)
- Marina Gourgouta
- Institute of Bio-economy and Agri-technology (iBO), Center for Research and Technology, Volos, Magnesia, Greece
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Phytokou str., N. Ionia, Magnesia, Greece
| | - Christos G Athanassiou
- Institute of Bio-economy and Agri-technology (iBO), Center for Research and Technology, Volos, Magnesia, Greece
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Phytokou str., N. Ionia, Magnesia, Greece
- USDA-ARS, Center for Grain and Animal Health Research, Manhattan, KS, USA
| | - Frank H Arthur
- USDA-ARS, Center for Grain and Animal Health Research, Manhattan, KS, USA
| |
Collapse
|
4
|
Sawadogo-Lingani H, Owusu-Kwarteng J, Glover R, Diawara B, Jakobsen M, Jespersen L. Sustainable Production of African Traditional Beers With Focus on Dolo, a West African Sorghum-Based Alcoholic Beverage. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.672410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Spontaneously fermented sorghum beers remain by far the most popular traditional cereal-based alcoholic beverages in Africa. Known under various common names (traditional beers, sorghum beers, opaque, native or indigenous beers) they are also recognized under various local names depending on the region or ethnic group. Dolo and pito are two similar traditional beers popular in West African countries including Burkina Faso, Mali, Ghana, Benin, Togo, Nigeria and Ivory Coast. These low-alcoholic beers are nutritious and contribute to the nutritional balance of local populations, as well as to their socio-cultural and economic well-being. The production of African traditional beers remains one of the major economic activities, creating employment and generating substantial income that contributes to livelihoods as well as the countries' economic systems. Their processing (malting and brewing) is still artisanal, based on traditional family know-how. The brewing process involves either an acidification and an alcoholic fermentation phases, or a mixed fermentation combining LAB and yeasts. Saccharomyces cerevisiae has been identified as the dominant yeast species involved in the alcoholic fermentation, with a biodiversity at strain level. LAB involved in the processing belong to the genera of Limosilactobacillus, Lactobacillus, Pediococcus, Leuconostoc, Lactococcus, Streptococcus, and Enterococcus. Molds (Aspergillus, Penicillium, Rhizopus, Geotrichum), and acetic bacteria are often associated with the malting and brewing processes. Challenges for sustainable production of African sorghum beer include inconsistent supply of raw materials, variability in product quality and safety, high energy consumption and its impact on the environment, poor packaging and short shelf-life. For sustainable and environmentally-friendly production of African sorghum beers, there is the need to assess the processing methods and address sustainability challenges. Strategies should promote wider distribution and adoption of improved sorghum varieties among farmers, prevent losses through the adoption of good storage practices of raw material, promote the adoption of improved cook stoves by the brewers, develop and adopt starter cultures for controlled fermentation, regulate the production through the establishment of quality standards and better valorize by-products and wastes to increase the competitiveness of the value chain. Appropriate packaging and stabilization processes should be developed to extend the shelf-life and diversify the channels for sustainable distribution of African cereal-based alcoholic beverages.
Collapse
|
5
|
Adebo OA. African Sorghum-Based Fermented Foods: Past, Current and Future Prospects. Nutrients 2020; 12:E1111. [PMID: 32316319 PMCID: PMC7231209 DOI: 10.3390/nu12041111] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 11/26/2022] Open
Abstract
Sorghum (Sorghum bicolor) is a well-known drought and climate resistant crop with vast food use for the inhabitants of Africa and other developing countries. The importance of this crop is well reflected in its embedded benefits and use as a staple food, with fermentation playing a significant role in transforming this crop into an edible form. Although the majority of these fermented food products evolve from ethnic groups and rural communities, industrialization and the application of improved food processing techniques have led to the commercial success and viability of derived products. While some of these sorghum-based fermented food products still continue to bask in this success, much more still needs to be done to further explore evolving techniques, technologies and processes. The addition of other affordable nutrient sources in sorghum-based fermented foods is equally important, as this will effectively augment the intake of a nutritionally balanced product.
Collapse
Affiliation(s)
- Oluwafemi Ayodeji Adebo
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg (Doornfontein Campus), P.O. Box 17011 Johannesburg, Gauteng 2028, South Africa
| |
Collapse
|
6
|
Nguyen AT, Althwab S, Qiu H, Zbasnik R, Urrea C, Carr TP, Schlegel V. Pinto Beans (Phaseolus vulgaris L.) Lower Non-HDL Cholesterol in Hamsters Fed a Diet Rich in Saturated Fat and Act on Genes Involved in Cholesterol Homeostasis. J Nutr 2019; 149:996-1003. [PMID: 31006805 DOI: 10.1093/jn/nxz044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/03/2019] [Accepted: 02/22/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Pinto beans contain multiple active agents such as polyphenols, flavonoids, and saponins, and have been shown to lower cholesterol, but the mechanisms involved in this effect have not been explored. OBJECTIVE This study was to investigate the changes in cholesterol metabolism in response to whole pinto beans (wPB) and their hulls (hPB) supplemented into a diet rich in saturated fat and the molecular mechanisms potentially responsible for these effects in hamsters. METHODS Forty-four 9-wk-old male Golden Syrian hamsters were randomly assigned to 4 diet groups (n = 11), including a 5% (wt:wt) fat diet [normal-fat diet (NF)], a 15% (wt:wt) fat diet [diet rich in saturated fat (HSF), saturated fatty acids accounted for 70% of total fatty acids], or HSF supplemented with 5% (wt:wt) wPB or 0.5% (wt:wt) hPB for 4 wk. Plasma, liver, intestinal, and fecal samples were collected to evaluate multiple cholesterol markers and gene targets. RESULTS The plasma non-high-density lipoprotein (non-HDL) concentration was significantly reduced in the wPB- and hPB-supplemented groups by 31.9 ± 3.5% and 53.6 ± 3.2%, respectively, compared with the HSF group (P < 0.01), to concentrations comparable with the NF group. The wPB-supplemented hamsters had significantly lower liver cholesterol (45.1%, P < 0.001) and higher fecal cholesterol concentrations (94.8%, P = 0.001) than those fed the HSF. The expressions of hepatic 3-hydroxy-3-methylglutaryl CoA reductase (Hmgcr) and small intestinal acyl-coenzyme A: cholesterol acyltransferase 2 (Acat2) were significantly decreased in animals administered wPB (by 89.1% and 63.8%, respectively) and hPB (by 72.9% and 47.7%, respectively) compared with their HSF-fed counterparts (P < 0.05). The wPB normalized the expression of Acat2 to the level of the NF group. CONCLUSION Pinto beans remediated high cholesterol induced by HSF in male hamsters by decreasing hepatic cholesterol synthesis and intestinal cholesterol absorption, effects which were partially exerted by the hulls.
Collapse
Affiliation(s)
- An Tien Nguyen
- Department of Food Science and Technology.,Faculty of Agriculture and Forestry, Dalat University, Dalat, Vietnam
| | - Sami Althwab
- Department of Nutrition and Health Sciences.,Department of Food Science and Human Nutrition, Qassim University, Buraidah, Saudi Arabia
| | - Haowen Qiu
- Department of Nutrition and Health Sciences
| | | | - Carlos Urrea
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE
| | | | | |
Collapse
|
7
|
Adebo OA, Kayitesi E, Tugizimana F, Njobeh PB. Differential metabolic signatures in naturally and lactic acid bacteria (LAB) fermented ting (a Southern African food) with different tannin content, as revealed by gas chromatography mass spectrometry (GC-MS)-based metabolomics. Food Res Int 2019; 121:326-335. [PMID: 31108755 DOI: 10.1016/j.foodres.2019.03.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/20/2019] [Accepted: 03/23/2019] [Indexed: 01/03/2023]
Abstract
Fermented whole grain (WG) sorghum food products including WG-ting can be obtained from different sample sources and fermentation conditions, leading subsequently to variations in the molecular composition of the products. There is however, a lack of detailed understanding and description of differential molecular profiles of these food products. Thus, the current study is a nontargeted gas chromatography-mass spectrometry (GC-MS)-based metabolomics approach to descriptively elucidate metabolic profiles of two WG-sorghum types [high tannin (HT) and low tannin (LT)] and their derived WG-ting products obtained via fermentation. Metabolites were extracted with 80% aqueous methanol and analyzed on a gas chromatography high resolution time of flight mass spectrometry (GC-HRTOF-MS) system. Chemometric methods such as principal component analysis (PCA) and orthogonal partial least square-discriminant analysis (OPLS-DA) were applied to mine the generated data. Our results showed that tannin contents influenced the composition of the raw sorghum and derived WG-ting samples. Metabolite signatures that differentiated raw HT- and LT-sorghum included cyclic compounds, pesticides, 2,4-di-tert-butylphenol, fatty acid esters, and sugar derivatives. Furthermore, fermentation of the HT- and LT-sorghum into WG-ting led to an increase in the levels of fatty acids, fatty acid esters and some other compounds which are vital from a dietary and health context. Equally observed were reduction of some phenols, cyclic compounds, a pesticide and ketone. Thus, the results demonstrated that the inherent metabolic composition of raw sorghum would lead to differential metabolic changes in the fermented products such as WG-ting, with subsequent dietary and health implications. Fermenting ting with Lactobacillus fermentum FUA 3321 was most desirable as relevant metabolites were observed in both HT- and LT-ting samples. Furthermore, the study highlights the applicability of GC-MS metabolomics in understanding WG-ting fermentation.
Collapse
Affiliation(s)
- Oluwafemi Ayodeji Adebo
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Gauteng, South Africa.
| | - Eugenie Kayitesi
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Gauteng, South Africa
| | - Fidele Tugizimana
- Research Centre for Plant Metabolomics, Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Campus, P.O. Box 524, Gauteng, South Africa; International R&D, Omnia Group, Ltd, P.O.Box 69888, Gauteng, South Africa
| | - Patrick Berka Njobeh
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Gauteng, South Africa
| |
Collapse
|
8
|
Althwab S, Carr TP, Weller CL, Dweikat IM, Schlegel V. Advances in grain sorghum and its co-products as a human health promoting dietary system. Food Res Int 2015. [DOI: 10.1016/j.foodres.2015.08.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Stefoska-Needham A, Beck EJ, Johnson SK, Tapsell LC. Sorghum: An Underutilized Cereal Whole Grain with the Potential to Assist in the Prevention of Chronic Disease. FOOD REVIEWS INTERNATIONAL 2015. [DOI: 10.1080/87559129.2015.1022832] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|