1
|
Xiao X, Jian Y, Jiang Y, Wei S, Song W. Condensed tannins from Salix babylonica L. leaves induce apoptosis of human ovarian cancer cells through mitochondrial and PI3K/AKT/ERK signaling pathways. Int J Biol Macromol 2025; 309:142635. [PMID: 40158587 DOI: 10.1016/j.ijbiomac.2025.142635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 03/20/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Condensed tannins, natural antioxidants, are widely known for their antitumor activity with low toxicity. However, the antitumor mechanism of Salix babylonica leaf condensed tannins (SCTs) remains unclear. Here, we purified bioactive SCTs and analyzed their structural characteristics, antitumor effects on human ovarian cancer (OC) cells as well as related potential mechanism. FT-IR, ESI-MS, and HPLC analyses demonstrated that SCTs primarily consist of procyanidins with (epi)catechin as the main flavan-3-ol extension unit. SCTs significantly inhibited the proliferation and migration of OVCAR3 and A2780 cells, induced G0/G1 cell cycle arrest, and promoted apoptosis. SCTs induced apoptosis through the mitochondrial apoptotic pathway by decreasing mitochondrial membrane potential, increasing intracellular reactive oxygen species generation, elevating the Bax/Bcl-2 ratio, and activating caspase-3. Network pharmacology analysis speculated that SCTs exert anti-ovarian cancer effects by targeting multiple targets and pathways, among which the PI3K/AKT/ERK pathway may be the main pathway of action. Western blot confirmed that SCTs inhibited the phosphorylation of AKT, MEK, and ERK. Moreover, SCTs dose-dependently impaired OVCAR3 tumor spheroid growth in three-dimensional culture models. These results suggested that SCTs induced apoptosis in OC cells by activating the mitochondrial-associated apoptosis pathway and inhibiting the PI3K/AKT/ERK signaling pathway, showing potential as therapeutic agents for OC.
Collapse
Affiliation(s)
- Xiaoxue Xiao
- College of Life Science, Yangtze University, Jingzhou 434023, China; School of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Yanbo Jian
- College of Life Science, Yangtze University, Jingzhou 434023, China; School of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Yu Jiang
- School of Clinical Medicine, Shandong Second Medical University, Weifang 261000, China
| | - Shudong Wei
- College of Life Science, Yangtze University, Jingzhou 434023, China.
| | - Wei Song
- School of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan 467036, China; Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
2
|
Grigorova N, Ivanova Z, Vachkova E, Petrova V, Penev T. DHA-Provoked Reduction in Adipogenesis and Glucose Uptake Could Be Mediated by Gps2 Upregulation in Immature 3T3-L1 Cells. Int J Mol Sci 2023; 24:13325. [PMID: 37686130 PMCID: PMC10487817 DOI: 10.3390/ijms241713325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
The signaling pathway of fatty acids in the context of obesity is an extensively explored topic, yet their primary mechanism of action remains incompletely understood. This study aims to examine the effect of docosahexaenoic acid (DHA) on some crucial aspects of adipogenesis in differentiating 3T3-L1 cells, using palmitic acid-treated (PA), standard differentiated, and undifferentiated adipocytes as controls. Employing 60 µM DHA or PA, 3T3-L1 preadipocytes were treated from the onset of adipogenesis, with negative and positive controls included. After eight days, we performed microscopic observations, cell viability assays, the determination of adiponectin concentration, intracellular lipid accumulation, and gene expression analysis. Our findings demonstrated that DHA inhibits adipogenesis, lipolysis, and glucose uptake by suppressing peroxisome proliferator-activated receptor gamma (Pparg) and G-protein coupled receptor 120 (Gpr120) gene expression. Cell cytotoxicity was ruled out as a causative factor, and β-oxidation involvement was suspected. These results challenge the conventional belief that omega-3 fatty acids, acting as Pparg and Gpr120 agonists, promote adipogenesis and enhance insulin-dependent glucose cell flux. Moreover, we propose a novel hypothesis suggesting the key role of the co-repressor G protein pathway suppressor 2 in mediating this process. Additional investigations are required to elucidate the molecular mechanisms driving DHA's anti-adipogenic effect and its broader health implications.
Collapse
Affiliation(s)
- Natalia Grigorova
- Department of Pharmacology, Animal Physiology, Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria; (Z.I.); (E.V.); (V.P.)
| | - Zhenya Ivanova
- Department of Pharmacology, Animal Physiology, Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria; (Z.I.); (E.V.); (V.P.)
| | - Ekaterina Vachkova
- Department of Pharmacology, Animal Physiology, Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria; (Z.I.); (E.V.); (V.P.)
| | - Valeria Petrova
- Department of Pharmacology, Animal Physiology, Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria; (Z.I.); (E.V.); (V.P.)
| | - Toncho Penev
- Department of Ecology and Animal Hygiene, Faculty of Agriculture, Trakia University, 6000 Stara Zagora, Bulgaria;
| |
Collapse
|
3
|
Huang X, Ji S, Bian C, Sun J, Ji H. The endoplasmic reticulum stress and B cell lymphoma-2 related ovarian killer participate in docosahexaenoic acid-induced adipocyte apoptosis in grass carp (Ctenopharyngodon idellus). J Anim Sci 2023; 101:skad101. [PMID: 37067261 PMCID: PMC10118398 DOI: 10.1093/jas/skad101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/12/2023] [Indexed: 04/18/2023] Open
Abstract
Docosahexaenoic acid (DHA) lessens adipose tissue lipid deposition partly by inducing adipocyte apoptosis in grass carp, but the underlying mechanism remains unclear. Endoplasmic reticulum (ER) stress and unfolded protein response (UPR) is the novel pathway for inducing apoptosis. This study aimed to explore the potential role of ER stress in DHA-induced apoptosis in grass carp (Ctenopharyngodon idellus) adipocytes. DHA induced apoptosis by deforming the nuclear envelope, condensing the chromatin, and increasing the expression of apoptosis-related proteins and genes in vivo and in vitro (P < 0.05). However, the ER stress inhibitor, 4-phenylbutyric acid (4-PBA), effectively suppressed DHA-induced apoptosis (P < 0.05), indicating that ER stress mediates DHA-induced adipocyte apoptosis. Furthermore, we observed that 200 μM DHA significantly up-regulates the transcripts of B cell lymphoma-2 (BCL-2) related ovarian killer (BOK) in vitro (P < 0.05). BOK is a pro-apoptotic protein in the BCL-2 family, which governs the mitochondria apoptosis pathway. Hence, we hypothesized that BOK might be an important linker between ER stress and apoptosis. We cloned and identified two grass carp BOK genes, BOKa and BOKb, which encode peptides of 213 and 216 amino acids, respectively. BOKa primarily localizes in ER and mitochondria in the cytoplasm, while BOKb localizes in the nucleus and cytoplasm of grass carp adipocytes. Moreover, 200 μM DHA treatment up-regulated the mRNA expression of BOKa and BOKb, whereas 4-PBA suppressed the DHA-induced expressions. These results raised the possibility that BOK participates in DHA-induced adipocyte apoptosis through ER stress signaling, in line with its localization in ER and mitochondria. Two UPR branches, the inositol-requiring enzyme 1 (IRE1α) and activating transcription factor 6 (ATF6) signaling pathways, are possibly important in DHA-induced adipocyte apoptosis, unlike protein kinase RNA-activated-like ER kinase. The study also emphasized the roles of BOKa and BOKb in IRE1α- and ATF6-mediated apoptosis. This work is the first to elucidate the importance of the ER stress-BOK pathway during adipocyte apoptosis in teleost.
Collapse
Affiliation(s)
- Xiaocheng Huang
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling 712100, China
| | - Shanghong Ji
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling 712100, China
| | - Chenchen Bian
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling 712100, China
| | - Jian Sun
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling 712100, China
| | - Hong Ji
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling 712100, China
| |
Collapse
|
4
|
Modulation of adipose inflammation by cellular retinoic acid-binding protein 1. Int J Obes (Lond) 2022; 46:1759-1769. [PMID: 35794192 PMCID: PMC9492549 DOI: 10.1038/s41366-022-01175-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 11/08/2022]
Abstract
Objectives Obesity, a metabolic syndrome, is known to be related to inflammation, especially adipose tissue inflammation. Cellular interactions within the expanded white adipose tissue (WAT) in obesity contribute to inflammation and studies have suggested that inflammation is triggered by inflamed adipocytes that recruit M1 macrophages into WAT. What causes accumulation of unhealthy adipocytes is an important topic of investigation. This study aims to understand the action of Cellular Retinoic Acid Binding Protein 1 (CRABP1) in WAT inflammation. Methods Eight weeks-old wild type (WT) and Crabp1 knockout (CKO) mice were fed with a normal diet (ND) or high-fat diet (HFD) for 8 weeks. Body weight and food intake were monitored. WATs and serum were collected for cellular and molecular analyses to determine affected signaling pathways. In cell culture studies, primary adipocyte differentiation and bone marrow-derived macrophages (BMDM) were used to examine adipocytes’ effects, mediated by CRABP1, in macrophage polarization. The 3T3L1-adipocyte was used to validate relevant signaling pathways. Results CKO mice developed an obese phenotype, more severely under high-fat diet (HFD) feeding. Further, CKO’s WAT exhibited a more severe inflammatory state as compared to wild type (WT) WAT, with a significantly expanded M1-like macrophage population. However, this was not caused by intrinsic defects of CKO macrophages. Rather, CKO adipocytes produced a significantly reduced level of adiponectin and had significantly lowered mitochondrial DNA content. CKO adipocyte-conditioned medium, compared to WT control, inhibited M2-like (CD206+) macrophage polarization. Mechanistically, defects in CKO adipocytes involved the ERK1/2 signaling pathway that could be modulated by CRABP1. Conclusions This study shows that CRABP1 plays a protective role against HFD-induced WAT inflammation through, in part, its regulation of adiponectin production and mitochondrial homeostasis in adipocytes, thereby modulating macrophage polarization in WAT to control its inflammatory potential.
Collapse
|
5
|
Shi HH, Chen LP, Wang CC, Zhao YC, Wang YM, Xue CH, Zhang TT. Docosahexaenoic acid-acylated curcumin diester alleviates cisplatin-induced acute kidney injury by regulating the effect of gut microbiota on the lipopolysaccharide- and trimethylamine- N-oxide-mediated PI3K/Akt/NF-κB signaling pathway in mice. Food Funct 2022; 13:6103-6117. [PMID: 35575345 DOI: 10.1039/d1fo04178a] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
An increasing number of studies have reported the effects of curcumin (Cur) and docosahexaenoic acid (DHA) on alleviating acute kidney injury (AKI). In this work, we have performed a comparative investigation to determine the effect of dietary DHA-acylated Cur esters, ester derivatives of Cur, and recombination of curcumin and DHA on alleviating acute kidney injury in a mouse model induced by a single intraperitoneal injection with cisplatin (20 mg kg-1). The results showed that the DHA-acylated Cur diesters significantly decreased the abnormally increased blood urea nitrogen, creatinine, lipopolysaccharide (LPS) and trimethylamine-N-oxide (TMAO) in serum caused by AKI. Histopathological results confirmed that DHA-acylated Cur diesters clearly reduced the degree of renal tubular injury. The renal protective effect of the DHA-acylated Cur diester was better than that of the monoester and the recombination of Cur and DHA. Notably, we found that the DHA-acylated Cur diester treatment remarkably changed the relative abundance of microbiota related to LPS and TMAO/trimethylamine (TMA) metabolism. Moreover, dietary DHA-acylated Cur diesters clearly reduced the MDA content and elevated GSH levels in the kidney of AKI mice, as well as changed the fatty acid composition in the kidney. Further mechanism studies showed that DHA-acylated Cur diesters significantly inhibited inflammation, apoptosis and oxidative stress by preventing the LPS and TMAO-mediated PI3K/Akt/NF-κB signaling pathway. The above results indicate that DHA-acylated Cur diesters are a potentially novel candidate or targeted dietary pattern to prevent and treat drug-induced acute kidney injury.
Collapse
Affiliation(s)
- Hao-Hao Shi
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, P. R. China.
| | - Li-Pin Chen
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, P. R. China.
| | - Cheng-Cheng Wang
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, P. R. China.
| | - Ying-Cai Zhao
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, P. R. China.
| | - Yu-Ming Wang
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, P. R. China. .,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, Shandong Province, P. R. China
| | - Chang-Hu Xue
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, P. R. China. .,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, Shandong Province, P. R. China
| | - Tian-Tian Zhang
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, P. R. China.
| |
Collapse
|
6
|
Ding Q, Hao Q, Zhang Q, Yang Y, Olsen RE, Ringø E, Ran C, Zhang Z, Zhou Z. Excess DHA Induces Liver Injury via Lipid Peroxidation and Gut Microbiota-Derived Lipopolysaccharide in Zebrafish. Front Nutr 2022; 9:870343. [PMID: 35571918 PMCID: PMC9096794 DOI: 10.3389/fnut.2022.870343] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Being highly unsaturated, n-3 long-chain polyunsaturated fatty acids (LC-PUFAs) are prone to lipid peroxidation. In this study, zebrafish were fed with low-fat diet (LFD), high-fat diet (HFD), or 2% DHA-supplemented HFD (HFDHA2.0). To study the possible negative effects of the high level of dietary DHA, growth rates, blood chemistry, liver histology, hepatic oxidative stress, apoptosis, and inflammatory processes were assessed. The cell studies were used to quantify the effects of DHA and antioxidant on cellular lipid peroxidation and viability. The possible interaction between gut microbiota and zebrafish host was evaluated in vitro. HFDHA2.0 had no effect on hepatic lipid level but induced liver injury, oxidative stress, and hepatocellular apoptosis, including intrinsic and death receptor-induced apoptosis. Besides, the inclusion of 2% DHA in HFD increased the abundance of Proteobacteria in gut microbiota and serum endotoxin level. In the zebrafish liver cell model, DHA activated intrinsic apoptosis while the antioxidant 4-hydroxy-Tempo (tempo) inhibited the pro-apoptotic negative effects of DHA. The apoptosis induced by lipopolysaccharide (LPS) was unaffected by the addition of tempo. In conclusion, the excess DHA supplementation generates hepatocellular apoptosis-related injury to the liver. The processes might propagate along at least two routes, involving lipid peroxidation and gut microbiota-generated LPS.
Collapse
Affiliation(s)
- Qianwen Ding
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Norway-China Joint Lab on Fish Gastrointestinal Microbiota, Institute of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Qiang Hao
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingshuang Zhang
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yalin Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rolf Erik Olsen
- Norway-China Joint Lab on Fish Gastrointestinal Microbiota, Institute of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Einar Ringø
- Norway-China Joint Lab on Fish Gastrointestinal Microbiota, Institute of Biology, Norwegian University of Science and Technology, Trondheim, Norway
- Faculty of Bioscience, Fisheries and Economics, Norwegian College of Fishery Science, UiT the Arctic University of Norway, Tromsø, Norway
| | - Chao Ran
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhen Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhigang Zhou
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
7
|
Xie X, Shu R, Yu C, Fu Z, Li Z. Mammalian AKT, the Emerging Roles on Mitochondrial Function in Diseases. Aging Dis 2022; 13:157-174. [PMID: 35111368 PMCID: PMC8782557 DOI: 10.14336/ad.2021.0729] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/29/2021] [Indexed: 01/21/2023] Open
Abstract
Mitochondrial dysfunction may play a crucial role in various diseases due to its roles in the regulation of energy production and cellular metabolism. Serine/threonine kinase (AKT) is a highly recognized antioxidant, immunomodulatory, anti-proliferation, and endocrine modulatory molecule. Interestingly, increasing studies have revealed that AKT can modulate mitochondria-mediated apoptosis, redox states, dynamic balance, autophagy, and metabolism. AKT thus plays multifaceted roles in mitochondrial function and is involved in the modulation of mitochondria-related diseases. This paper reviews the protective effects of AKT and its potential mechanisms of action in relation to mitochondrial function in various diseases.
Collapse
Affiliation(s)
- Xiaoxian Xie
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Ruonan Shu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Chunan Yu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zezhi Li
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
8
|
Falvo S, Rosati L, Di Fiore MM, Di Giacomo Russo F, Chieffi Baccari G, Santillo A. Proliferative and Apoptotic Pathways in the Testis of Quail Coturnix coturnix during the Seasonal Reproductive Cycle. Animals (Basel) 2021; 11:ani11061729. [PMID: 34207904 PMCID: PMC8226535 DOI: 10.3390/ani11061729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary The quail Coturnix coturnix exhibits an annual cycle of testis size, sexual steroid production, and spermatogenesis. The testicular levels of both 17β-estradiol (E2) and androgens are higher during the reproductive period compared to the non-reproductive period, suggesting that estrogens act in synergy with the androgens for the initiation of spermatogenesis. Therefore, the present study aimed to investigate the estrogen responsive system in quail testis in relation to the reproduction seasons, with a focus on the molecular pathways activated in both active and regressive quail testes. The results indicated that estrogens participated in the activation of mitotic and meiotic events during the reproductive period by activating the ERK1/2 and Akt-1 pathways. In the non-reproductive period, when the E2/ERα levels are low, ERK1/2 and Akt-1 pathways remain inactive and apoptotic events occur. Our results suggest that the activation or inhibition of these molecular pathways plays a crucial role in the physiological switch “on/off” of the testicular activity in male quail during the seasonal reproductive cycle. Abstract The quail Coturnix coturnix is a seasonal breeding species, with the annual reproductive cycle of its testes comprising an activation phase and a regression phase. Our previous results have proven that the testicular levels of both 17β-estradiol (E2) and androgens are higher during the reproductive period compared to the non-reproductive period, which led us to hypothesize that estrogens and androgens may act synergistically to initiate spermatogenesis. The present study was, therefore, aimed to investigate the estrogen responsive system in quail testis in relation to the reproduction seasonality, with a focus on the molecular pathways elicited in both active and regressive quail testes. Western blotting and immunohistochemistry analysis revealed that the expression of ERα, which is the predominant form of estrogen receptors in quail testis, was correlated with E2 concentration, suggesting that increased levels of E2-induced ERα could play a key role in the resumption of spermatogenesis during the reproductive period, when both PCNA and SYCP3, the mitotic and meiotic markers, respectively, were also increased. In the reproductive period we also found the activation of the ERK1/2 and Akt-1 kinase pathways and an increase in second messengers cAMP and cGMP levels. In the non-reproductive phase, when the E2/ERα levels were low, the inactivation of ERK1/2 and Akt-1 pathways favored apoptotic events due to an increase in the levels of Bax and cytochrome C, with a consequent regression of the gonad.
Collapse
Affiliation(s)
- Sara Falvo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (S.F.); (M.M.D.F.); (F.D.G.R.); (G.C.B.)
| | - Luigi Rosati
- Dipartimento di Biologia, Università degli Studi di Napoli “Federico II”, 80138 Napoli, Italy;
| | - Maria Maddalena Di Fiore
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (S.F.); (M.M.D.F.); (F.D.G.R.); (G.C.B.)
| | - Federica Di Giacomo Russo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (S.F.); (M.M.D.F.); (F.D.G.R.); (G.C.B.)
| | - Gabriella Chieffi Baccari
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (S.F.); (M.M.D.F.); (F.D.G.R.); (G.C.B.)
| | - Alessandra Santillo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (S.F.); (M.M.D.F.); (F.D.G.R.); (G.C.B.)
- Correspondence:
| |
Collapse
|
9
|
Abstract
We evaluated the effect of in vitro digested milk on mature adipocytes 3T3-L1, paying particular attention to its fatty acid composition, and comparing human (HM), donkey (DM), bovine (BM), ovine (OM), caprine (CM) and formula (FM) milk. Cellular viability, apoptosis, oxidative response and gene expression levels of NF-κB p65, HMGB1, SREBP-1c and FAS were evaluated. Digested milk treatments significantly reduced 3T3-L1 mature adipocytes viability and caspase activity compared with control group, but no significant differences were observed among different sources of digested milk. In all digested milk samples, ROS level was higher than the control, however, the digested human and formula milk showed lower levels of ROS than DM, BM, OM and CM samples. Lower capacity of HM and FM to induce oxidative stress in mature adipocytes was ascribed to the peculiar free fatty acids profile of digested milk samples. All milk treatments elicited a significant over-expression of NF-κB p65 in 3T3-L1 adipocytes compared to the control; the lowest gene expression was found in HM, BM, OM and CM, the highest in FM and an intermediate behavior was shown in DM. All digested milk treatments influenced the gene expression of SRBP-1c with FM and HM showing the highest levels. For FAS expression, BM showed the highest level, OM and CM intermediate and FM, HM and DM the lowest levels, however HM and DM had comparable levels to the control.
Collapse
|
10
|
Jin A, Shi XC, Liu Y, Sun J, Ji H. Docosahexaenoic acid induces PPARγ-dependent preadipocytes apoptosis in grass carp Ctenopharyngodon idella. Gen Comp Endocrinol 2018; 266:211-219. [PMID: 29782840 DOI: 10.1016/j.ygcen.2018.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 03/26/2018] [Accepted: 05/17/2018] [Indexed: 01/04/2023]
Abstract
Our previous study showed that docosahexaenoic acid (DHA) plays an important role in decreasing lipid accumulation by inducing apoptosis of the adipocytes in grass carp. However, the mechanism involved remains unclear. DHA has been reported as the natural ligand of PPARγ. The present study aimed to assess whether PPARγ mediates the pro-apoptotic effects by DHA. Adipocytes of grass carp were cultured until 2 days post-confluence and were treated with DHA at various concentrations-0, 25, 50, 100, 200, and 400 μmol/L for 24 h and at 200 μmol/L for various time periods (0, 12, 24, and 48 h, respectively). Besides, the adipocytes were exposed to 200 μM DHA and PPARγ antagonist or inhibitor of certain key enzymes of apoptosis, following which the expression levels of key genes of the cell apoptotic and mitochondrial apoptotic pathways were detected. We found that DHA induced apoptosis of grass carp adipocytes in a time- and dose-dependent manner (P < 0.05). In addition, DHA treatment significantly increased the protein and gene expression levels of PPARγ (P < 0.05), but the PPARγ antagonist significantly abolished this effect and the DHA pro-apoptotic effect (P < 0.05). Moreover, treatment with caspase 9 inhibitor significantly attenuated the DHA-induced preadipocytes apoptosis effects, while treatment with caspase 8 inhibitor showed no influence. These observations suggest that the DHA-induced apoptosis in adipocytes might be mediated by PPARγ and via the intrinsic apoptotic pathway in grass carp.
Collapse
Affiliation(s)
- Ai Jin
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, PR China
| | - Xiao-Chen Shi
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, PR China
| | - Yangyang Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, PR China
| | - Jian Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, PR China
| | - Hong Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
11
|
Modulation of Adipocyte Differentiation and Proadipogenic Gene Expression by Sulforaphane, Genistein, and Docosahexaenoic Acid as a First Step to Counteract Obesity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1617202. [PMID: 29576843 PMCID: PMC5821952 DOI: 10.1155/2018/1617202] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/28/2017] [Accepted: 01/11/2018] [Indexed: 12/12/2022]
Abstract
Obesity is characterized by excess body fat accumulation due to an increase in the size and number of differentiated mature adipocytes. Adipocyte differentiation is regulated by genetic and environmental factors, and its inhibition could represent a strategy for obesity prevention and treatment. The current study was designed with two aims: (i) to evaluate the changes in the expression of adipogenic markers (C/EBPα, PPARγ variant 1 and variant 2, and GLUT4) in 3T3-L1 murine preadipocytes at four stages of the differentiation process and (ii) to compare the effectiveness of sulforaphane, genistein, and docosahexaenoic acid in reducing lipid accumulation and modulating C/EBPα, PPARγ1, PPARγ2, and GLUT4 mRNA expression in mature adipocytes. All bioactive compounds were shown to suppress adipocyte differentiation, although with different effectiveness. These results set the stage for further studies considering natural food constituents as important agents in preventing or treating obesity.
Collapse
|
12
|
Jin A, Lei CX, Tian JJ, Sun J, Ji H. Dietary docosahexaenoic acid decreased lipid accumulation via inducing adipocytes apoptosis of grass carp, Ctenopharygodon idella. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:197-207. [PMID: 28918543 DOI: 10.1007/s10695-017-0424-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 09/04/2017] [Indexed: 06/07/2023]
Abstract
The purpose of this study was to explore the mechanism of by which docosahexaenoic acid (DHA) inhibit the accumulation of adipose tissue lipid in grass carp (Ctenopharyngodon idella). We therefore designed two semi-purified diets, namely DHA-free (control) and DHA-supplemented, and fed them to grass carp (22.19 ± 1.76 g) for 3 and 6 weeks. DHA supplementation led to a significantly lower intraperitoneal fat index (IPFI) than that in the control group by reducing the number of adipocytes but significantly higher adipocyte size (P < 0.05). In the intraperitoneal adipose tissue, the DHA-fed group showed significantly higher peroxisome proliferator-activated receptor (PPAR)γ, CCAAT enhancer-binding protein (C/EBP)α, and sterol regulatory element-binding protein (SREBP)1c mRNA expression levels at both 3 and 6 weeks (P < 0.05). However, the ratio of the expression levels of B cell leukemia 2 (Bcl-2) and Bcl-2-associated X protein (Bax) was significantly lower in the DHA-fed group than in the control group (P < 0.05), and the protein expression levels of the apoptosis-related proteins caspase 3, caspase 8, and caspase 9 were also significantly higher (P < 0.05). Overall, although DHA promotes lipid synthesis, it is more likely that DHA could suppress the lipid accumulation in adipocytes of grass carp by inducing adipocyte apoptosis.
Collapse
Affiliation(s)
- Ai Jin
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Cai-Xia Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Jing-Jing Tian
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Jian Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Hong Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, People's Republic of China.
| |
Collapse
|
13
|
Liu P, Tian JJ, Ji H, Sun J, Li C, Huang JQ, Li Y, Yu HB, Yu EM, Xie J. The Wnt/β-catenin pathway contributes to the regulation of adipocyte development induced by docosahexaenoic acid in grass carp, Ctenopharyngodon idellus. Comp Biochem Physiol B Biochem Mol Biol 2018; 216:18-24. [DOI: 10.1016/j.cbpb.2017.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/20/2017] [Accepted: 11/14/2017] [Indexed: 12/16/2022]
|