1
|
Mahamud AGMSU, Tanvir IA, Kabir ME, Samonty I, Chowdhury MAH, Rahman MA. Gerobiotics: Exploring the Potential and Limitations of Repurposing Probiotics in Addressing Aging Hallmarks and Chronic Diseases. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10501-w. [PMID: 40029460 DOI: 10.1007/s12602-025-10501-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2025] [Indexed: 03/05/2025]
Abstract
As unhealthy aging continues to rise globally, there is a pressing need for effective strategies to promote healthy aging, extend health span, and address aging-related complications. Gerobiotics, an emerging concept in geroscience, offers a novel approach to repurposing selective probiotics, postbiotics, and parabiotics to modulate key aging processes and enhance systemic health. This review explores recent advancements in gerobiotics research, focusing on their role in targeting aging hallmarks, regulating longevity-associated pathways, and reducing risks of multiple age-related chronic conditions. Despite their promise, significant challenges remain, including optimizing formulations, ensuring safety and efficacy across diverse populations, and achieving successful clinical translation. Addressing these gaps through rigorous research, well-designed clinical trials, and advanced biotechnologies can establish gerobiotics as a transformative intervention for healthy aging and chronic disease prevention.
Collapse
Affiliation(s)
| | | | - Md Ehsanul Kabir
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53715, USA.
| | - Ismam Samonty
- Department of Agricultural Chemistry, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Anamul Hasan Chowdhury
- Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea
| | - Md Ashikur Rahman
- Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea
| |
Collapse
|
2
|
Yousaf AA, Zeng H, Abbasi KS, Bergholz T, Siddiq M, Dolan K. Development and biochemical characterization of freeze-dried guava powder fortified with Lactobacillus plantarum. J Food Sci 2024; 89:8644-8657. [PMID: 39592245 DOI: 10.1111/1750-3841.17537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024]
Abstract
Guava (Psidium guajava L.) is one of the most nutrient-dense fruits, which is native to tropical and subtropical regions of the world. The processing of value-added products from guava has not been carried out on a scale similar to some other fruits, which offers an opportunity to fully exploit the potential of this fruit, such as guava-based nutraceutical food products. The objectives of the present study were to develop freeze-dried guava powders (FDGPs) from two guava varieties (white and pink) and characterize their physico-chemical and nutritional properties. FDGP was also incorporated with probiotic strains of Lactobacillus plantarum, to develop a healthy nutraceutical probiotic supplement. Functional groups assessed by Fourier transform infrared (FTIR) spectroscopy exhibited the existence of strong C-Br stretch, O-H stretch, and C = C stretch vibrations; however, scanning electron micrograms (SEMs) showed the flaky structure indicating the presence of starch, dietary fibers, and esterified groups of pectin. Significant mineral concentrations (mg/100 g) of potassi-um (323-362), magnesium (26.2-28.8), zinc (0.43-0.51), and iron (0.52-0.63) were observed in FDGPs. The FDGP samples from both guava varieties had high levels of crude fiber (43.94-46.29%), vitamin C (2.27-2.49 mg/g), and phenolic compounds (57.50-61.86 mg GAE/g) as well as significant antioxidant properties. Fortification of FDGP with L. plantarum strains produced significant results in terms of probiotic viability that was nearly maintained at 108 CFU/g up to 60 days in the final product. The viability of probiotics proved that FDGP is a good carrier of prebiotics and can be utilized as a potent probiotic supplement.
Collapse
Affiliation(s)
- Ali Asad Yousaf
- Institute of Food & Nutritional Sciences, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
- Department of Food Science & Human Nutrition, Michigan State University, East Lansing, Michigan, USA
| | - Hui Zeng
- Department of Food Science & Human Nutrition, Michigan State University, East Lansing, Michigan, USA
| | - Kashif Sarfraz Abbasi
- Institute of Food & Nutritional Sciences, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Teresa Bergholz
- Department of Food Science & Human Nutrition, Michigan State University, East Lansing, Michigan, USA
| | - Muhammad Siddiq
- Department of Food Science & Human Nutrition, Michigan State University, East Lansing, Michigan, USA
| | - Kirk Dolan
- Department of Food Science & Human Nutrition, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
3
|
Khalil M, Di Ciaula A, Mahdi L, Jaber N, Di Palo DM, Graziani A, Baffy G, Portincasa P. Unraveling the Role of the Human Gut Microbiome in Health and Diseases. Microorganisms 2024; 12:2333. [PMID: 39597722 PMCID: PMC11596745 DOI: 10.3390/microorganisms12112333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
The human gut is a complex ecosystem that supports billions of living species, including bacteria, viruses, archaea, phages, fungi, and unicellular eukaryotes. Bacteria give genes and enzymes for microbial and host-produced compounds, establishing a symbiotic link between the external environment and the host at both the gut and systemic levels. The gut microbiome, which is primarily made up of commensal bacteria, is critical for maintaining the healthy host's immune system, aiding digestion, synthesizing essential nutrients, and protecting against pathogenic bacteria, as well as influencing endocrine, neural, humoral, and immunological functions and metabolic pathways. Qualitative, quantitative, and/or topographic shifts can alter the gut microbiome, resulting in dysbiosis and microbial dysfunction, which can contribute to a variety of noncommunicable illnesses, including hypertension, cardiovascular disease, obesity, diabetes, inflammatory bowel disease, cancer, and irritable bowel syndrome. While most evidence to date is observational and does not establish direct causation, ongoing clinical trials and advanced genomic techniques are steadily enhancing our understanding of these intricate interactions. This review will explore key aspects of the relationship between gut microbiota, eubiosis, and dysbiosis in human health and disease, highlighting emerging strategies for microbiome engineering as potential therapeutic approaches for various conditions.
Collapse
Affiliation(s)
- Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari Aldo Moro, 70124 Bari, Italy; (M.K.); (A.D.C.); (L.M.); (N.J.)
| | - Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari Aldo Moro, 70124 Bari, Italy; (M.K.); (A.D.C.); (L.M.); (N.J.)
| | - Laura Mahdi
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari Aldo Moro, 70124 Bari, Italy; (M.K.); (A.D.C.); (L.M.); (N.J.)
| | - Nour Jaber
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari Aldo Moro, 70124 Bari, Italy; (M.K.); (A.D.C.); (L.M.); (N.J.)
| | - Domenica Maria Di Palo
- Division of Hygiene, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy;
| | - Annarita Graziani
- Institut AllergoSan Pharmazeutische Produkte Forschungs- und Vertriebs GmbH, 8055 Graz, Austria;
| | - Gyorgy Baffy
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02130, USA;
- Section of Gastroenterology, Department of Medicine, VA Boston Healthcare System, Boston, MA 02130, USA
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari Aldo Moro, 70124 Bari, Italy; (M.K.); (A.D.C.); (L.M.); (N.J.)
| |
Collapse
|
4
|
Noori M, Shateri Z, Babajafari S, Eskandari MH, Parastouei K, Ghasemi M, Afshari H, Samadi M. The effect of probiotic-fortified kefir on cardiovascular risk factors in elderly population: a double-blind, randomized, placebo-controlled clinical trial. BMC Nutr 2024; 10:74. [PMID: 38741203 DOI: 10.1186/s40795-024-00875-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
INTRODUCTION The outbreak of cardiovascular disease (CVD) augments with age. Gut dysbiosis can worsen or initiate systemic disorders such as metabolic diseases and CVDs. Therefore, this research aimed to assess the effect of kefir fortified with Lactobacillus helveticus R0052 and Bifidobacterium longum R017 on CVD risk factors in the elderly population. The subjects of this study were selected from the Motahari Clinic in Shiraz, Iran. METHOD This study was a double-blind, randomized, and controlled clinical trial that was conducted on 67 elderly people who were randomly divided into two groups: the fortified kefir group (n = 32), which received one bottle of fortified kefir (240 cc), and the placebo group (n = 35), which received one bottle of regular kefir for eight weeks. To analyze the data, SPSS software was applied. RESULTS After eight weeks, significant differences were seen in atherogenic and Castell's risk index I between the fortified and regular groups (p = 0.048 and p = 0.048, respectively). No significant differences were found in Castelli's risk index II, high-density lipoprotein cholesterol (HDL-C), total cholesterol, triglycerides (TG), non-HDL-C, TG-cholesterol index, and fasting blood sugar by comparing the two groups. CONCLUSION Our investigation demonstrated that fortified kefir with probiotics did not significantly affect lipid profiles. Still, it could significantly affect some indices, including Castelli's risk index I and atherogenic index. More studies are required to confirm the findings and mechanisms of probiotics' effect on CVD risk factors. TRIAL NUMBER The present registered at the Iranian Registry of Clinical Trials (IRCT20130227012628N3) at 2023-02-21.
Collapse
Affiliation(s)
- Mehran Noori
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Zainab Shateri
- Department of Nutrition and Biochemistry, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Siavash Babajafari
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Science, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hadi Eskandari
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Karim Parastouei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Ghasemi
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hoseein Afshari
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Samadi
- Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Mohanan A, Harilal SL, Plakkot B, Pottakkat B, Kanakkaparambil R. Nutritional Epigenetics and Gut Microbiome. EPIGENETICS AND HUMAN HEALTH 2024:121-159. [DOI: 10.1007/978-3-031-54215-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
6
|
Fan X, Ling N, Liu C, Liu M, Xu J, Zhang T, Zeng X, Wu Z, Pan D. Screening of an efficient cholesterol-lowering strain of Lactiplantibacillus plantarum 54-1 and investigation of its degradation molecular mechanism. ULTRASONICS SONOCHEMISTRY 2023; 101:106698. [PMID: 37980826 PMCID: PMC10696113 DOI: 10.1016/j.ultsonch.2023.106698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/27/2023] [Accepted: 11/15/2023] [Indexed: 11/21/2023]
Abstract
In this study, an efficient cholesterol-lowering strain of Lactiplantibacillus plantarum 54-1 was screened and its degradation molecular mechanism was investigated. Furthermore, a novel practical MRS medium for screening cholesterol-lowering lactic acid bacteria (LAB) was developed based on ultrasound treatment. L. plantarum 54-1 was found to have the highest ability to eliminate cholesterol (340.69 ± 5.87 µg/mL). According to SEM and the count of viable LAB results, the morphology of LAB in the cholesterol-containing medium developed in this experiment was close to the normal (full and smooth), and it can grow normally. Metabolomics revealed that L. plantarum 54-1 initially converted a portion of cholesterol to 7α-hydroxy-cholesterol and then to the key metabolite taurine, via the phosphotransferase system. These metabolites were further transformed into L-alanine, L-lysine, N6-Acetyl-L-lysine, (R)-b-aminoisobutyric acid, and 2-oxoarginine, through glycine, serine, and threonine metabolism, citrate cycle, D-arginine and D-ornithine metabolism, lysine degradation, and pyruvate metabolism pathways. Prokaryotic reference transcriptomics found that this may be mainly regulated by the bsh, phnE, ptsP, B0667_RS04545, and B0667_RSRS12300 genes, which was further validated by qPCR. Furthermore, molecular docking results demonstrated that 8 differential metabolites might bind to another portion of cholesterol via PI-PI conjugation and hydrophobic interactions and lower cholesterol via co-sedimentation. This study has strategic implications for developing probiotic powder food that lowers cholesterol.
Collapse
Affiliation(s)
- Xiankang Fan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Nan Ling
- Nanjing Weigang Dairy Co., Nanjing 211100, China
| | - Chunli Liu
- Agricultural Technology Extension Center of Anqiu City, Anqiu 262199, China
| | - Mingzhen Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Jue Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Tao Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China.
| |
Collapse
|
7
|
Jia B, Zou Y, Han X, Bae JW, Jeon CO. Gut microbiome-mediated mechanisms for reducing cholesterol levels: implications for ameliorating cardiovascular disease. Trends Microbiol 2023; 31:76-91. [PMID: 36008191 DOI: 10.1016/j.tim.2022.08.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/24/2022] [Accepted: 08/01/2022] [Indexed: 11/27/2022]
Abstract
Cardiovascular disease (CVD) is a health problem worldwide, and elevated cholesterol levels are a key risk factor for the disease. Dysbiotic gut microbiota has been shown to be associated with CVD development. However, the beneficial effects of healthy microbiota in decreasing cholesterol levels have not been summarized. Herein, we begin by discussing the potential mechanisms by which the gut microbiota reduces cholesterol levels. We further sketch the application of probiotics from the genera Lactobacillus and Bifidobacterium in reducing cholesterol levels in clinical studies. Finally, we present the cholesterol-lowering function of beneficial commensal microbes, such as Akkermansia and Bacteroides spp., as these microbes have potential to be the next-generation probiotics (NGPs). The information reviewed in this paper will help people to understand how the gut microbiome might alter cholesterol metabolism and enable the development of NGPs to prevent and treat CVD.
Collapse
Affiliation(s)
- Baolei Jia
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea.
| | | | - Xiao Han
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Jin-Woo Bae
- Department of Biology, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea.
| |
Collapse
|
8
|
Afzaal M, Saeed F, Shah YA, Hussain M, Rabail R, Socol CT, Hassoun A, Pateiro M, Lorenzo JM, Rusu AV, Aadil RM. Human gut microbiota in health and disease: Unveiling the relationship. Front Microbiol 2022; 13:999001. [PMID: 36225386 PMCID: PMC9549250 DOI: 10.3389/fmicb.2022.999001] [Citation(s) in RCA: 228] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/31/2022] [Indexed: 12/04/2022] Open
Abstract
The human gut possesses millions of microbes that define a complex microbial community. The gut microbiota has been characterized as a vital organ forming its multidirectional connecting axis with other organs. This gut microbiota axis is responsible for host-microbe interactions and works by communicating with the neural, endocrinal, humoral, immunological, and metabolic pathways. The human gut microorganisms (mostly non-pathogenic) have symbiotic host relationships and are usually associated with the host’s immunity to defend against pathogenic invasion. The dysbiosis of the gut microbiota is therefore linked to various human diseases, such as anxiety, depression, hypertension, cardiovascular diseases, obesity, diabetes, inflammatory bowel disease, and cancer. The mechanism leading to the disease development has a crucial correlation with gut microbiota, metabolic products, and host immune response in humans. The understanding of mechanisms over gut microbiota exerts its positive or harmful impacts remains largely undefined. However, many recent clinical studies conducted worldwide are demonstrating the relation of specific microbial species and eubiosis in health and disease. A comprehensive understanding of gut microbiota interactions, its role in health and disease, and recent updates on the subject are the striking topics of the current review. We have also addressed the daunting challenges that must be brought under control to maintain health and treat diseases.
Collapse
Affiliation(s)
- Muhammad Afzaal
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
- *Correspondence: Muhammad Afzaal,
| | - Farhan Saeed
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Yasir Abbas Shah
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muzzamal Hussain
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Roshina Rabail
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | | | - Abdo Hassoun
- Sustainable AgriFoodtech Innovation & Research (SAFIR), Arras, France
- Syrian Academic Expertise (SAE), Gaziantep, Turkey
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Ourense, Spain
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Ourense, Spain
- Área de Tecnoloxía dos Alimentos, Faculdade de Ciências de Ourense, Universidade de Vigo, Ourense, Spain
| | - Alexandru Vasile Rusu
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
- Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
- Rana Muhammad Aadil,
| |
Collapse
|
9
|
Frappier M, Auclair J, Bouasker S, Gunaratnam S, Diarra C, Millette M. Screening and Characterization of Some Lactobacillaceae for Detection of Cholesterol-Lowering Activities. Probiotics Antimicrob Proteins 2022; 14:873-883. [PMID: 35704269 PMCID: PMC9474388 DOI: 10.1007/s12602-022-09959-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 11/11/2022]
Abstract
Dyslipidemia, specifically abnormal levels of low-density lipoprotein cholesterol (LDL-C), is an important risk factor of cardiovascular disease. Evidence showing the promising abilities of probiotics to lower total cholesterol or LDL-C has, however, not yet convinced experts to recommend probiotic bacteria as treatment for blood lipid management. Therefore, there are opportunities for the development of new efficient cholesterol-lowering probiotics. Bile salt hydrolase (BSH) and feruloyl esterase (FAE) are bacterial enzymes proposed to explain the cholesterol-lowering capacity of some bacteria and have both been shown to be responsible for lipid reduction in vivo. Here, in order to select for cholesterol-lowering bacteria, 70 strains related to Lactobacillaceae were screened for BSH and FAE activities. Based on this two-way screening approach, two bacteria were selected and assessed for their capacity to assimilate cholesterol in vitro, another suggested mechanism. Lactobacillus acidophilus CL1285 showed BSH and FAE activity as well as capacity to assimilate cholesterol in vitro. Lactiplantibacillus plantarum CHOL-200 exhibited BSH activity and ability to assimilate cholesterol. These properties observed in vitro make both strains good probiotic candidates for the management of dyslipidemia. Further investigation is needed to assess their ability to reduce blood cholesterol in human trial.
Collapse
Affiliation(s)
- Martin Frappier
- Bio-K Plus International Inc., a Kerry Company, 495 Armand-Frappier Boulevard, Laval, QC, H7V 4B3, Canada
| | - Julie Auclair
- Bio-K Plus International Inc., a Kerry Company, 495 Armand-Frappier Boulevard, Laval, QC, H7V 4B3, Canada
| | - Samir Bouasker
- Bio-K Plus International Inc., a Kerry Company, 495 Armand-Frappier Boulevard, Laval, QC, H7V 4B3, Canada
| | - Sathursha Gunaratnam
- Bio-K Plus International Inc., a Kerry Company, 495 Armand-Frappier Boulevard, Laval, QC, H7V 4B3, Canada
| | - Carine Diarra
- Bio-K Plus International Inc., a Kerry Company, 495 Armand-Frappier Boulevard, Laval, QC, H7V 4B3, Canada
| | - Mathieu Millette
- Bio-K Plus International Inc., a Kerry Company, 495 Armand-Frappier Boulevard, Laval, QC, H7V 4B3, Canada.
| |
Collapse
|
10
|
Singh RP, Shadan A, Ma Y. Biotechnological Applications of Probiotics: A Multifarious Weapon to Disease and Metabolic Abnormality. Probiotics Antimicrob Proteins 2022; 14:1184-1210. [PMID: 36121610 PMCID: PMC9483357 DOI: 10.1007/s12602-022-09992-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2022] [Indexed: 12/25/2022]
Abstract
Consumption of live microorganisms "Probiotics" for health benefits and well-being is increasing worldwide. Their use as a therapeutic approach to confer health benefits has fascinated humans for centuries; however, its conceptuality gradually evolved with methodological advancement, thereby improving our understanding of probiotics-host interaction. However, the emerging concern regarding safety aspects of live microbial is enhancing the interest in non-viable or microbial cell extracts, as they could reduce the risks of microbial translocation and infection. Due to technical limitations in the production and formulation of traditionally used probiotics, the scientific community has been focusing on discovering new microbes to be used as probiotics. In many scientific studies, probiotics have been shown as potential tools to treat metabolic disorders such as obesity, type-2 diabetes, non-alcoholic fatty liver disease, digestive disorders (e.g., acute and antibiotic-associated diarrhea), and allergic disorders (e.g., eczema) in infants. However, the mechanistic insight of strain-specific probiotic action is still unknown. In the present review, we analyzed the scientific state-of-the-art regarding the mechanisms of probiotic action, its physiological and immuno-modulation on the host, and new direction regarding the development of next-generation probiotics. We discuss the use of recently discovered genetic tools and their applications for engineering the probiotic bacteria for various applications including food, biomedical applications, and other health benefits. Finally, the review addresses the future development of biological techniques in combination with clinical and preclinical studies to explain the molecular mechanism of action, and discover an ideal multifunctional probiotic bacterium.
Collapse
Affiliation(s)
- Rajnish Prakash Singh
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand India
| | - Afreen Shadan
- Dr. Shyama Prasad Mukherjee University, Ranchi, Jharkhand India
| | - Ying Ma
- College of Resource and Environment, Southwest University, Chongqing, China
| |
Collapse
|
11
|
Sharma S, Singh A, Sharma S, Kant A, Sevda S, Taherzadeh MJ, Garlapati VK. Functional foods as a formulation ingredients in beverages: technological advancements and constraints. Bioengineered 2021; 12:11055-11075. [PMID: 34783642 PMCID: PMC8810194 DOI: 10.1080/21655979.2021.2005992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/21/2022] Open
Abstract
As a consequence of expanded science and technical research, the market perception of consumers has shifted from standard traditional to valuable foods, which are furthermore nutritional as well as healthier in today's world. This food concept, precisely referred to as functional, focuses on including probiotics, which enhance immune system activity, cognitive response, and overall health. This review primarily focuses on functional foods as functional additives in beverages and other food items that can regulate the human immune system and avert any possibility of contracting the infection. Many safety concerns must be resolved during their administration. Functional foods must have an adequate amount of specific probiotic strain(s) during their use and storage, as good viability is needed for optimum functionality of the probiotic. Thus, when developing novel functional food-based formulations, choosing a strain with strong technological properties is crucial. The present review focused on probiotics as an active ingredient in different beverage formulations and the exerting mechanism of action and fate of probiotics in the human body. Moreover, a comprehensive overview of the regulative and safety issues of probiotics-based foods and beverages formulations.
Collapse
Affiliation(s)
- Shagun Sharma
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Astha Singh
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Swati Sharma
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Anil Kant
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Surajbhan Sevda
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, India
| | | | - Vijay Kumar Garlapati
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| |
Collapse
|
12
|
The Role of Gut Microbiota on Cholesterol Metabolism in Atherosclerosis. Int J Mol Sci 2021; 22:ijms22158074. [PMID: 34360839 PMCID: PMC8347163 DOI: 10.3390/ijms22158074] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022] Open
Abstract
Hypercholesterolemia plays a causal role in the development of atherosclerosis and is one of the main risk factors for cardiovascular disease (CVD), the leading cause of death worldwide especially in developed countries. Current data show that the role of microbiota extends beyond digestion by being implicated in several metabolic and inflammatory processes linked to several diseases including CVD. Studies have reported associations between bacterial metabolites and hypercholesterolemia. However, such associations remain poorly investigated and characterized. In this review, the mechanisms of microbial derived metabolites such as primary and secondary bile acids (BAs), trimethylamine N-oxide (TMAO), and short-chain fatty acids (SCFAs) will be explored in the context of cholesterol metabolism. These metabolites play critical roles in maintaining cardiovascular health and if dysregulated can potentially contribute to CVD. They can be modulated via nutritional and pharmacological interventions such as statins, prebiotics, and probiotics. However, the mechanisms behind these interactions also remain unclear, and mechanistic insights into their impact will be provided. Therefore, the objectives of this paper are to present current knowledge on potential mechanisms whereby microbial metabolites regulate cholesterol homeostasis and to discuss the feasibility of modulating intestinal microbes and metabolites as a novel therapeutic for hypercholesterolemia.
Collapse
|
13
|
Wouk J, Dekker RFH, Queiroz EAIF, Barbosa-Dekker AM. β-Glucans as a panacea for a healthy heart? Their roles in preventing and treating cardiovascular diseases. Int J Biol Macromol 2021; 177:176-203. [PMID: 33609583 DOI: 10.1016/j.ijbiomac.2021.02.087] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/04/2021] [Accepted: 02/12/2021] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death worldwide. Factors increasing the risks for CVD development are related to obesity, diabetes, high blood cholesterol, high blood pressure and lifestyle. CVD risk factors may be treated with appropriate drugs, but prolonged can use cause undesirable side-effects. Among the natural products used in complementary and alternative medicines, are the β-ᴅ-glucans; biopolymers found in foods (cereals, mushrooms), and can easily be produced by microbial fermentation. Independent of source, β-glucans of the mixed-linked types [(1 → 3)(1 → 6)-β-ᴅ-glucans - fungal, and (1 → 3)(1 → 4)-β-ᴅ-glucans - cereal] have widely been studied because of their biological activities, and have demonstrated cardiovascular protective effects. In this review, we discuss the roles of β-ᴅ-glucans in various pathophysiological conditions that lead to CVDs including obesity, dyslipidemia, hyperglycemia, oxidative stress, hypertension, atherosclerosis and stroke. The β-glucans from all of the sources cited demonstrated potential hypoglycemic, hypocholesterolemic and anti-obesogenicity activities, reduced hypertension and ameliorated the atherosclerosis condition. More recently, β-glucans are recognized as possessing prebiotic properties that modulate the gut microbiome and impact on the health benefits including cardiovascular. Overall, all the studies investigated unequivocally demonstrated the dietary benefits of consuming β-glucans regardless of source, thus constituting a promising panaceutical approach to reduce CVD risk factors.
Collapse
Affiliation(s)
- Jéssica Wouk
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Estadual do Centro-Oeste, Campus CEDETEG, CEP: 85040-167, Guarapuava, Paraná, Brazil
| | - Robert F H Dekker
- Universidade Tecnológica Federal do Paraná, Programa de Pós-Graduação em Engenharia Ambiental, Câmpus Londrina, CEP: 86036-370 Londrina, Paraná, Brazil; Beta-Glucan Produtos Farmoquímicos - EIRELI, Avenida João Miguel Caram 731, Lote 24(A), Bloco Zircônia, Universidade Tecnológica Federal do Paraná, CEP: 86036-700 Londrina, Paraná, Brazil.
| | - Eveline A I F Queiroz
- Núcleo de Pesquisa e Apoio Didático em Saúde, Instituto de Ciências da Saúde, Câmpus Universitário de Sinop, Universidade Federal de Mato Grosso, CEP: 78.557-267 Sinop, Mato Grosso, Brazil
| | - Aneli M Barbosa-Dekker
- Beta-Glucan Produtos Farmoquímicos - EIRELI, Avenida João Miguel Caram 731, Lote 24(A), Bloco Zircônia, Universidade Tecnológica Federal do Paraná, CEP: 86036-700 Londrina, Paraná, Brazil
| |
Collapse
|
14
|
Faghihimani Z, Namazi N, Ghaffari S, Rezaei Kelishadi M, Sharifi S, Nattagh-Eshtivani E, Akbarzadeh M, Moravejolahkami AR, Khorvash F, Roshanravan N, Alamdari NM. Effects of Inulin Type-Carbohydrates on blood pressure: a systematic review and meta-analysis. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2021. [DOI: 10.1080/10942912.2020.1858863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Zahra Faghihimani
- Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nazli Namazi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Samad Ghaffari
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahnaz Rezaei Kelishadi
- Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shima Sharifi
- Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Moloud Akbarzadeh
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Reza Moravejolahkami
- Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fariborz Khorvash
- Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Neda Roshanravan
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naimeh Mesri Alamdari
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Students Research Committee, School of Public Health, Iran University of Medical Science, Tehran, Iran
| |
Collapse
|
15
|
Nguyen TPT, Garrahan MA, Nance SA, Seeger CE, Wong C. Assimilation of Cholesterol by Monascus purpureus. J Fungi (Basel) 2020; 6:E352. [PMID: 33317087 PMCID: PMC7770578 DOI: 10.3390/jof6040352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023] Open
Abstract
Monascus purpureus, a filamentous fungus known for its fermentation of red yeast rice, produces the metabolite monacolin K used in statin drugs to inhibit cholesterol biosynthesis. In this study, we show that active cultures of M. purpureus CBS 109.07, independent of secondary metabolites, use the mechanism of cholesterol assimilation to lower cholesterol in vitro. We describe collection, extraction, and gas chromatography-flame ionized detection (GC-FID) methods to quantify the levels of cholesterol remaining after incubation of M. purpureus CBS 109.07 with exogenous cholesterol. Our findings demonstrate that active growing M. purpureus CBS 109.07 can assimilate cholesterol, removing 36.38% of cholesterol after 48 h of incubation at 37 °C. The removal of cholesterol by resting or dead M. purpureus CBS 109.07 was not significant, with cholesterol reduction ranging from 2.75-9.27% throughout a 72 h incubation. Cholesterol was also not shown to be catabolized as a carbon source. Resting cultures transferred from buffer to growth media were able to reactivate, and increases in cholesterol assimilation and growth were observed. In growing and resting phases at 24 and 72 h, the production of the mycotoxin citrinin was quantified via high-performance liquid chromatography-ultraviolet (HPLC-UV) and found to be below the limit of detection. The results indicate that M. purpureus CBS 109.07 can reduce cholesterol content in vitro and may have a potential application in probiotics.
Collapse
Affiliation(s)
- Theresa P. T. Nguyen
- Department of Chemistry & Biochemistry, Loyola University Maryland, Baltimore, MD 21210, USA; (M.A.G.); (S.A.N.); (C.E.S.); (C.W.)
| | | | | | | | | |
Collapse
|
16
|
Sivamaruthi BS, Fern LA, Rashidah Pg Hj Ismail DSN, Chaiyasut C. The influence of probiotics on bile acids in diseases and aging. Biomed Pharmacother 2020; 128:110310. [PMID: 32504921 DOI: 10.1016/j.biopha.2020.110310] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023] Open
Abstract
Recent evidence indicates the use of probiotics in the prevention and treatment of diseases. Probiotics are capable of changing the gut microbiota composition and bile acid synthesis to elicit health benefits such as cholesterol-lowering, weight reduction, and improving insulin sensitivity. The aging population is prone to develop diseases because of their decreased physiological and biological systems. Probiotics are one of the promising supplements that may potentially counteract these detrimental effects. This review will discuss the influence of probiotics on bile acids in different populations-the elderly, obese individuals, and those with hypercholesterolemia, type 2 diabetes, hypertension, and non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Bhagavathi Sundaram Sivamaruthi
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Lim Ai Fern
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Jalan Tungku Link BE1410, Brunei
| | | | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
17
|
Kemsawasd V, Chaikham P. Effects of Frozen Storage on Viability of Probiotics and Antioxidant Capacities of Synbiotic Riceberry and Sesame-Riceberry Milk Ice Creams. CURRENT RESEARCH IN NUTRITION AND FOOD SCIENCE JOURNAL 2020. [DOI: 10.12944/crnfsj.8.1.10] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
According to many recent studies, ice cream was found to be an effective carrier of probiotics along the human gastrointestinal tract. While probiotics have long been known to improve gut health, prebiotic-supplemented ice creams have demonstrated properties that could be linked to various health benefits and improvement of the gut microbiota. In this study, riceberry and sesame-riceberry milk ice creams were supplemented with inulin, Lactobacillus casei 01 and Lactobacillus acidophilus LA5 to examine the changes of probiotic populations in different formulations of ice cream. The survivability of probiotics after 60 days of frozen storage and the level of viable cell tolerance towards the simulated gastrointestinal environment were also assessed, followed by sensory evaluation with 100 untrained panelists and determination of chemical qualities of ice cream samples. Findings revealed L. casei 01 to be more resistant to frozen storage compared to L acidophilus LA5, whereas addition of sesame milk and inulin were shown to minimize levels of viable cell loss following environmental and mechanical stress, suggesting enhanced probiotic activity. Significant reductions in probiotic viability were observed for all ice cream samples, however higher survival rates were observed in prebiotic-supplemented samples prior to and after 60 days of frozen storage. Probiotic cell counts in all samples exceeded the minimum recommended value (6 log CFU/g). In simulated gastric and bile fluid, all samples illustrated a significant change in probiotic levels, which significantly decreased with increase time of exposure to acidic and basic conditions. Probiotic strains in samples containing riceberry, sesame and inulin demonstrated greatest survivability as observed by reduction in pH and increased total acidity, with increased antioxidant and phenolic contents. On the other hand, changes in physicochemical properties of ice cream lowered overall sensory scores in terms of color and flavor. This study contributes to future development and applications of riceberry and sesame for inducement of synbiotic effects in novel probiotic products.
Collapse
Affiliation(s)
- Varongsiri Kemsawasd
- Institute of Nutrition, Mahidol University, Nakorn Pathom campus, Nakorn Pathom 73170, Thailand
| | - Pittaya Chaikham
- Faculty of Science and Technology, Phranakhon Si Ayutthaya Rajabhat University, Phranakhon Si Ayutthaya Rajabhat 13000, Thailand
| |
Collapse
|
18
|
Xavier-Santos D, Bedani R, Lima ED, Saad SMI. Impact of probiotics and prebiotics targeting metabolic syndrome. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103666] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
19
|
Ahmad M, Mudgil P, Maqsood S. Camel whey protein microparticles for safe and efficient delivery of novel camel milk derived probiotics. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.03.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
20
|
Onal Darilmaz D, Beyatli Y. Bile salt deconjugation activity of
Propionibacterium
strains and their cholesterol co‐precipitation abilities. INT J DAIRY TECHNOL 2019. [DOI: 10.1111/1471-0307.12619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Derya Onal Darilmaz
- Faculty of Science and Letters, Department of Biotechnology and Molecular Biology Aksaray University 68100Aksaray Turkey
| | - Yavuz Beyatli
- Faculty of Science, Department of Biology Gazi University 06500Ankara Turkey
| |
Collapse
|
21
|
Nan B, Liu YL, You Y, Li WC, Fan JJ, Wang YS, Piao CH, Hu DL, Lu GJ, Wang YH. Protective effects of enhanced minor ginsenosides in Lactobacillus fermentum KP-3-fermented ginseng in mice fed a high fat diet. Food Funct 2019; 9:6020-6028. [PMID: 30397690 DOI: 10.1039/c8fo01056k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Lactobacillus fermentum KP-3 was isolated from Korean pickle and used to ferment ginseng. The changes in the minor ginsenosides in the fermented ginseng were analyzed and the material was evaluated in high fat diet-fed mice. Total ginsenosides increased from 0.746 mg g-1 to 0.939 mg g-1 after fermentation, and the levels of minor ginsenosides (Rg2, Rg3, Rh1, Rh2, F2, and Ro) increased from 0.186 mg g-1 to 0.704 mg g-1. In an animal study, the serum TC and LDL levels in the HFD group were significantly higher than those of the control group. Compared with the HFD group, the probiotic-fermented ginseng significantly decreased the serum TC and LDL levels. In addition, the serum and liver ALT and AST levels were dramatically increased in the HFD group, but these increases were significantly inhibited by treatment with the probiotic-fermented ginseng. Furthermore, fermented ginseng reduced high fat diet-induced liver lipid accumulation. Overall, fermentation with L. fermentum KP-3 enhanced minor ginsenosides in ginseng and this probiotic-fermented ginseng ameliorated hyperlipidemia and liver injury induced by a high fat diet.
Collapse
Affiliation(s)
- Bo Nan
- College of Food science and Engineering, Jilin Agricultural University, Changchun, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Esmaeilnejad Moghadam B, Keivaninahr F, Fouladi M, Rezaei Mokarram R, Nazemi A. Inulin addition to yoghurt: Prebiotic activity, health effects and sensory properties. INT J DAIRY TECHNOL 2019. [DOI: 10.1111/1471-0307.12579] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
| | - Fatemeh Keivaninahr
- Department of Food Science and Technology Faculty of Agriculture Tabriz University TabrizIran
| | - Masoumeh Fouladi
- Department of Chemical Engineering University of Sistan and Baluchestan Zahedan Iran
| | - Reza Rezaei Mokarram
- Department of Food Science and Technology Faculty of Agriculture Tabriz University TabrizIran
| | - Aylar Nazemi
- Department of Food Science and Technology Faculty of Agriculture Tabriz University TabrizIran
| |
Collapse
|
23
|
|
24
|
Machado Prado MR, Boller C. Anti-inflammatory effects of probiotics. DISCOVERY AND DEVELOPMENT OF ANTI-INFLAMMATORY AGENTS FROM NATURAL PRODUCTS 2019:259-282. [DOI: 10.1016/b978-0-12-816992-6.00009-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
25
|
Study of soy-fortified green tea curd formulated using potential hypocholesterolemic and hypotensive probiotics isolated from locally made curd. Food Chem 2018; 268:558-566. [DOI: 10.1016/j.foodchem.2018.06.114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 11/17/2022]
|
26
|
Probiotic Minas Frescal cheese added with L. casei 01: Physicochemical and bioactivity characterization and effects on hematological/biochemical parameters of hypertensive overweighted women – A randomized double-blind pilot trial. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.04.015] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
27
|
Kang Y, Cai Y. Gut microbiota and hypertension: From pathogenesis to new therapeutic strategies. Clin Res Hepatol Gastroenterol 2018; 42:110-117. [PMID: 29102544 DOI: 10.1016/j.clinre.2017.09.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/07/2017] [Accepted: 09/29/2017] [Indexed: 02/08/2023]
Abstract
Hypertension (HTN) has become a global public health concern and a major risk factor for cardiovascular, cerebrovascular, and kidney diseases. The complex interplay of genetic and environmental influences is important for the development of the disease. Accumulating evidence has illustrated the association of dysbiosis of gut microbiota with hypertension. Certain gut microbial strains may play either a pathogenic or a protective role in the development of hypertension. Oral probiotics can therefore represent a therapeutic approach for hypertension treatment. However, the relevant scientific work has only just begun, and the available data in this field remain limited. Fortunately, recent technological developments that permit identification of microbes and their products using culture-independent molecular detection techniques. In this review, we summarize the role of gut microbiota in hypertension progression, and probiotics in the treatment of hypertension.
Collapse
Affiliation(s)
- Yongbo Kang
- Medical School, Kunming University of Science and Technology, Kunming 650500, Yunnan, China; Genetics and Pharmacogenomics Laboratory, Kunming University of Science and Technology, Kunming 650500, Yunnan, China.
| | - Yue Cai
- Medical School, Kunming University of Science and Technology, Kunming 650500, Yunnan, China; Pathogen biology Laboratory, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| |
Collapse
|
28
|
Balthazar CF, Silva HL, Esmerino EA, Rocha RS, Moraes J, Carmo MA, Azevedo L, Camps I, K.D Abud Y, Sant'Anna C, Franco RM, Freitas MQ, Silva MC, Raices RS, Escher GB, Granato D, Senaka Ranadheera C, Nazarro F, Cruz AG. The addition of inulin and Lactobacillus casei 01 in sheep milk ice cream. Food Chem 2018; 246:464-472. [DOI: 10.1016/j.foodchem.2017.12.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/28/2017] [Accepted: 12/04/2017] [Indexed: 12/20/2022]
|
29
|
Horáčková Š, Plocková M, Demnerová K. Importance of microbial defence systems to bile salts and mechanisms of serum cholesterol reduction. Biotechnol Adv 2017; 36:682-690. [PMID: 29248683 DOI: 10.1016/j.biotechadv.2017.12.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/30/2017] [Accepted: 12/12/2017] [Indexed: 12/14/2022]
Abstract
An important feature of the intestinal microbiota, particularly in the case of administered probiotic microorganisms, is their resistance to conditions in the gastrointestinal tract, particularly tolerance to and growth in the presence of bile salts. Bacteria can use several defence mechanisms against bile, including special transport mechanisms, the synthesis of various types of surface proteins and fatty acids or the production of exopolysaccharides. The ability to enzymatically hydrolyse bile salts occurs in a variety of bacteria. Choloylglycine hydrolase (EC 3.5.1.24), a bile salt hydrolase, is a constitutive intracellular enzyme responsible for the hydrolysis of an amide bond between glycine or taurine and the steroid nucleus of bile acids. Its presence was demonstrated in specific microorganisms from several bacterial genera (Lactobacillus spp., Bifidobacterium spp., Clostridium spp., Bacteroides spp.). Occurrence and gene arrangement encoding this enzyme are highly variable in probiotic microorganisms. Bile salt hydrolase activity may provide the possibility to use the released amino acids by bacteria as sources of carbon and nitrogen, to facilitate detoxification of bile or to support the incorporation of cholesterol into the cell wall. Deconjugation of bile salts may be directly related to a lowering of serum cholesterol levels, from which conjugated bile salts are synthesized de novo. Furthermore, the ability of microorganisms to assimilate or to bind ingested cholesterol to the cell wall or to eliminate it by co-precipitation with released cholic acid was also documented. Some intestinal microflora produce cholesterol reductase that catalyses the conversion of cholesterol to insoluble coprostanol, which is subsequently excreted in faeces, thereby also reducing the amount of exogenous cholesterol.
Collapse
Affiliation(s)
- Šárka Horáčková
- Department of Dairy, Fat and Cosmetics, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic.
| | - Milada Plocková
- Department of Dairy, Fat and Cosmetics, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic.
| | - Kateřina Demnerová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic.
| |
Collapse
|
30
|
Batista A, Silva R, Cappato L, Ferreira M, Nascimento K, Schmiele M, Esmerino E, Balthazar C, Silva H, Moraes J, Pimentel T, Freitas M, Raices R, Silva M, Cruz A. Developing a synbiotic fermented milk using probiotic bacteria and organic green banana flour. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.09.037] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
31
|
Ramos-Romero S, Hereu M, Molinar-Toribio E, Almajano MP, Méndez L, Medina I, Taltavull N, Romeu M, Nogués MR, Torres JL. Effects of the combination of ω-3 PUFAs and proanthocyanidins on the gut microbiota of healthy rats. Food Res Int 2017; 97:364-371. [PMID: 28578061 DOI: 10.1016/j.foodres.2017.04.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/06/2017] [Accepted: 04/23/2017] [Indexed: 11/26/2022]
Abstract
ω-3 Polyunsaturated fatty acids (PUFAs) reduce risk factors for cardiovascular diseases (CVD) and other pathologies that involve low-grade inflammation. They have recently been shown to exert complementary functional effects with proanthocyanidins. As the reduction of health-promoting gut bacteria such as lactobacilli and bifidobacteria has been linked to a number of alterations in the host, the aim of this study was to determine whether PUFAs and proanthocyanidins also cooperate in maintaining well-balanced microbiota. To this end, rats were supplemented for 6months with eicosapentaenoic acid (EPA)/docosahexaenoic acid (DHA) 1:1 (16.6g/kg feed); proanthocyanidin-rich grape seed extract (GSE, 0.8g/kg feed); or both. Plasma adiponectin, cholesterol, and urine nitrites were measured. Gut bacterial subgroups were evaluated in fecal DNA by qRT-PCR. Short-chain fatty acids (SCFAs) were determined in feces by gas chromatography. Body and adipose tissue weights were found to be higher in the animals given ω-3 PUFAs, while their energy intake was lower. Plasma cholesterol was lower in ω-3 PUFA supplemented groups, while adiponectin and urine nitrites were higher. ω-3 PUFAs reduced the population of Lactobacillales and L. acidophilus after 6months of supplementation. GSE significantly reduced L. plantarum and B. longum. The combination of ω-3 PUFAs and GSE maintained the health-promoting bacteria at levels similar to those of the control group. Acetic acid was increased by the ω-3 PUFA individual supplementation, while the combination with GSE kept this value similar to the control value. In conclusion, while individual supplementations with ω-3 PUFAs or GSE modify the populations of Lactobacillus, Bifidobacterium and microbial products (SCFAs), their combination maintains the standard proportions of these bacterial subgroups and their function while also providing the cardiovascular benefits of ω-3 PUFAs.
Collapse
Affiliation(s)
- Sara Ramos-Romero
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain.
| | - Mercè Hereu
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain.
| | | | - María Pilar Almajano
- Chemical Engineering Department, Technical University of Catalonia, Barcelona, Spain.
| | - Lucía Méndez
- Instituto de Investigaciones Marinas (IIM-CSIC), Vigo, Spain.
| | - Isabel Medina
- Instituto de Investigaciones Marinas (IIM-CSIC), Vigo, Spain.
| | - Núria Taltavull
- Faculty of Medicine and Health Science, Universitat Rovira i Virgili, Reus, Spain.
| | - Marta Romeu
- Faculty of Medicine and Health Science, Universitat Rovira i Virgili, Reus, Spain.
| | - Maria Rosa Nogués
- Faculty of Medicine and Health Science, Universitat Rovira i Virgili, Reus, Spain.
| | - Josep Lluís Torres
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain.
| |
Collapse
|
32
|
|
33
|
Dias DR, Botrel DA, Fernandes RVDB, Borges SV. Encapsulation as a tool for bioprocessing of functional foods. Curr Opin Food Sci 2017. [DOI: 10.1016/j.cofs.2017.02.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
34
|
Viana de Souza J, Silva Dias F. Protective, technological, and functional properties of select autochthonous lactic acid bacteria from goat dairy products. Curr Opin Food Sci 2017. [DOI: 10.1016/j.cofs.2017.01.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|