1
|
Hussain A. Extraction methods, structural diversity and potential biological activities of Artemisia L. polysaccharides (APs): A review. Int J Biol Macromol 2025; 309:142802. [PMID: 40185453 DOI: 10.1016/j.ijbiomac.2025.142802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/14/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
The extraction and structural characterization of polysaccharides are challenging in plants with overlapping distributions such as Artemisia, the plant genus producing antimalarial drug artemisinin discovered by the Nobel Prize 2015 winning Professor Tu You-you. The diversity in Artemisia polysaccharides (APs) is due to difference in extraction methods leading to different bioactivities. In spite of that, APs utilization is decelerated due to lack of a review portraying current advancements. This review delivers data on extraction, structural characterization and bioactivities of APs with emphasis on mechanisms of action and structure-function relationships. Outcomes indicated that various polysaccharides in 16 Artemisia species were reported and comprehensively described. The common methods for preparing APs were hot water and microwave assisted extractions with maximum yield. Maximum plant parts used to extract APs include leaves, aerial part, whole plant and seeds. The APs presented varying molecular weight, monosaccharide composition, carbohydrates, proteins, uronic acids and phenolic content with around 20 bioactivities. Data on structure-function relationships indicated that the bioactivities of APs are highly correlated with the differences in Mw and monosaccharide's type. While Artemisia species discussed here are the most studied species for their polysaccharides, other Artemisia species may offer unique polysaccharides with distinct biological properties; hence, the future research could focus on expanding the scope of species studied. Broader investigations are also needed specifically on the structure-function relationships of APs with the elucidation of impact of unknown factors on their efficacy.
Collapse
Affiliation(s)
- Adil Hussain
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex, Ferozepur Road, Lahore 54600, Punjab, Pakistan.
| |
Collapse
|
2
|
Yan JN, Jiang XY, Li L, Sun W, Lai B, Wu HT. Storage stability of scallop (Patinopecten yessoensis) male gonad hydrolysates/κ-carrageenan composite hydrogels embeded curcumin. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
3
|
Zhang Y, Guo Y, Liu F, Luo Y. Recent development of egg protein fractions and individual proteins as encapsulant materials for delivery of bioactives. Food Chem 2023; 403:134353. [DOI: 10.1016/j.foodchem.2022.134353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 10/14/2022]
|
4
|
Ma L, Gao T, Cheng H, Li N, Huang W, Liang L. Encapsulation of Folic Acid and α-Tocopherol in Lysozyme Particles and Their Bioaccessibility in the Presence of DNA. Antioxidants (Basel) 2023; 12:antiox12030564. [PMID: 36978812 PMCID: PMC10045426 DOI: 10.3390/antiox12030564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 03/30/2023] Open
Abstract
Protein particles have been reported as the potential carriers for the co-encapsulation of bioactive components. In this study, lysozyme, a basic protein, was used to simultaneously encapsulate folic acid and α-tocopherol at pH 4.0. The encapsulation efficiency and loading capacity of folic acid or α-tocopherol increased with its respective concentration. Folic acid had no influence on the encapsulation of α-tocopherol. However, the encapsulation of folic acid was improved by α-tocopherol below 40 μg/mL but reduced by α-tocopherol at higher concentrations. The encapsulation by lysozyme shielded folic acid, α-tocopherol, or both partially from the attack of 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) radical cation. No masking effect of lysozyme encapsulation on α-tocopherol was found in DPPH antioxidant activity assay. Furthermore, the DNA coating was used to improve the dispersion of lysozyme with folic acid and α-tocopherol. The lysozyme/DNA particles with folic acid and α-tocopherol showed a homogenous size distribution of 180-220 nm with ζ-potential values between -33 and -36 mV. The release and bioaccessibility of folic acid in lysozyme/DNA with α-tocopherol were similar to that of folic acid alone, while the release of α-tocopherol was delayed and its bioaccessibility was improved by encapsulation in lysozyme/DNA with folic acid. The data gathered here would provide guidance for the use of lysozyme-based co-encapsulating carriers in the development of functional foods.
Collapse
Affiliation(s)
- Lingling Ma
- State Key Lab. of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Tiecheng Gao
- Fujian Zunjin Health Science and Technology Co., Ltd., and IBF International Inc., Quanzhou 362200, China
| | - Hao Cheng
- State Key Lab. of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ning Li
- Fujian Zunjin Health Science and Technology Co., Ltd., and IBF International Inc., Quanzhou 362200, China
| | - Weining Huang
- State Key Lab. of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Li Liang
- State Key Lab. of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
5
|
Han H, Jiao Y, Chang Y, Cheng Y, Shi L. Glycosylation of Zein Hydrolysate as a Nanocarrier for Lutein Delivery: Preparation and Stability. Front Pharmacol 2022; 13:905059. [PMID: 35586048 PMCID: PMC9108384 DOI: 10.3389/fphar.2022.905059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Lutein is a functional carotenoid that has a wide range of physiological benefits in humans. However, it easily degrades and becomes inactivated during storage and processing, resulting in low bioavailability. The development of new nanocarriers can effectively improve the stability and biological activity of lutein. In this study, zein hydrolysate (ZH) carriers were glycosylated with glucosamine (GLU) under the action of transglutaminase, and lutein-loaded glycosylated ZH nanoparticles (GZH-LUT) were constructed by liquid–liquid dispersion. The results showed that the GZH-LUT particles had a narrow size distribution in the range of 200–300 nm and a decreased zeta potential and polydispersity index. In particular, GZH trapped lutein more efficiently than ZH. In addition, GZH-LUT had better physical and chemical properties, including better water solubility, oxidative stability, and environmental stability than free lutein and ZH-LUT. These results indicate that glycosylated zein hydrolysate has the potential to be used as a novel protein-based nanocarrier to enhance the solubility and stability of lutein, which can further improve its bioavailability.
Collapse
|
6
|
Zhao L, Tong Q, Liu Y, Geng Z, Yin L, Xu W, Rehman A. Fabrication and characterization of octenyl succinic anhydride modified pullulan micelles for encapsulating curcumin. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2874-2884. [PMID: 34755344 DOI: 10.1002/jsfa.11628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Curcumin has become increasingly popular in functional foods and beverages field as a result of its high biological activity. Nevertheless, the application of curcumin is usually limited by its poor water solubility, low absorption, rapid metabolism and instability. Accordingly, the development of an appropriate wall material is crucial for its effective use. In the present study, curcumin-octenyl succinic anhydride modified pullulan (Cur-OSAP) micelles were successfully prepared by an anti-solvent co-precipitation method. RESULTS Octenyl succinic anhydride modified pullulan (OSAP) micelles exhibited the highest encapsulation efficiency (57.31%) and loading capacity (5.73%) of curcumin when the mass ratio of OSAP to curcumin was 10:1 and the degree of substitution of OSAP was 0.0469, at which point Cur-OSAP micelles formed via hydrogen binding and hydrophobic interactions, as confirmed by Fourier transform infrared and fluorescence techniques. The transmission electron microscopy results showed that the Cur-OSAP micelles were roughly spherical in shape with diameters in the approximate range 30-60 nm. CONCLUSION The encapsulation of OSAP greatly improved photostability and sustained release properties of curcumin in Cur-OSAP micelles. These findings suggest that OSAP can be used as a carrier to encapsulate and protect hydrophobic food ingredients. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Li Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qunyi Tong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yutong Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ziwei Geng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Lichen Yin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wentian Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Abdur Rehman
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
7
|
Encapsulation of selenium-containing peptides in xanthan gum-lysozyme nanoparticles as a powerful gastrointestinal delivery system. Food Res Int 2022; 156:111351. [DOI: 10.1016/j.foodres.2022.111351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/24/2022] [Accepted: 05/04/2022] [Indexed: 11/19/2022]
|
8
|
Maillard-Type Protein-Polysaccharide Conjugates and Electrostatic Protein-Polysaccharide Complexes as Delivery Vehicles for Food Bioactive Ingredients: Formation, Types, and Applications. Gels 2022; 8:gels8020135. [PMID: 35200516 PMCID: PMC8871776 DOI: 10.3390/gels8020135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/29/2022] Open
Abstract
Due to their combination of featured properties, protein and polysaccharide-based carriers show promising potential in food bioactive ingredient encapsulation, protection, and delivery. The formation of protein–polysaccharide complexes and conjugates involves non-covalent interactions and covalent interaction, respectively. The common types of protein–polysaccharide complex/conjugate-based bioactive ingredient delivery systems include emulsion (conventional emulsion, nanoemulsion, multiple emulsion, multilayered emulsion, and Pickering emulsion), microcapsule, hydrogel, and nanoparticle-based delivery systems. This review highlights the applications of protein–polysaccharide-based delivery vehicles in common bioactive ingredients including polyphenols, food proteins, bioactive peptides, carotenoids, vitamins, and minerals. The loaded food bioactive ingredients exhibited enhanced physicochemical stability, bioaccessibility, and sustained release in simulated gastrointestinal digestion. However, limited research has been conducted in determining the in vivo oral bioavailability of encapsulated bioactive compounds. An in vitro simulated gastrointestinal digestion model incorporating gut microbiota and a mucus layer is suggested for future studies.
Collapse
|
9
|
Gómez-Guillén MC, Montero MP. Enhancement of oral bioavailability of natural compounds and probiotics by mucoadhesive tailored biopolymer-based nanoparticles: A review. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106772] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Luo L, Wu Y, Liu C, Zou Y, Huang L, Liang Y, Ren J, Liu Y, Lin Q. Elaboration and characterization of curcumin-loaded soy soluble polysaccharide (SSPS)-based nanocarriers mediated by antimicrobial peptide nisin. Food Chem 2021; 336:127669. [PMID: 32758804 DOI: 10.1016/j.foodchem.2020.127669] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 07/16/2020] [Accepted: 07/23/2020] [Indexed: 12/18/2022]
Abstract
Curcumin was recently attracted great interest owing to its multiple bioactivities; however, the use of curcumin was hindered by its poor solubility and stability. In this study, curcumin-nisin-soy soluble polysaccharide nanoparticles (Cur-Nisin-SSPS-NPs, size = 118.76 nm) have been successfully elaborated to improve the application of curcumin. The formation of Cur-Nisin-SSPS-NPs was mediated by amphiphilic and positively charged nisin: SSPS encapsulated nisin, which was mainly driven by electrostatic attraction. And nisin-SSPS complex encapsulated curcumin mainly through hydrophobic interactions between nisin and curcumin. The encapsulation efficiency of curcumin (91.66%) in this novel nanocarriers was significantly higher than that in nanoparticles prepared by a single SSPS (31.82%) or nisin (41.69%), most likely because more hydrophobic regions of nisin were exposed after interacting with SSPS through electrostatic interaction. Consequently, this facile and green nanocarriers improved the solubility/dispersibility and stability of curcumin and nisin, as well as endowed SSPS-based nanoparticles with antioxidant and antimicrobial activities.
Collapse
Affiliation(s)
- Lijuan Luo
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Ying Wu
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Chun Liu
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Yuan Zou
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing 100048, China; College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Liang Huang
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Ying Liang
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jiali Ren
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yingli Liu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Qinlu Lin
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| |
Collapse
|
11
|
Skalickova S, Horky P, Mlejnkova V, Skladanka J, Hosnedlova B, Ruttkay‐Nedecky B, Fernandez C, Kizek R. Theranostic Approach for the Protein Corona of Polysaccharide Nanoparticles. CHEM REC 2020; 21:17-28. [DOI: 10.1002/tcr.202000042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 10/22/2020] [Indexed: 01/06/2023]
Affiliation(s)
- Sylvie Skalickova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy Masaryk University Palackeho 1946/1 612 00 Brno Czech Republic
- Department of Animal Nutrition and Forage Production Mendel University in Brno Zemedelska 1 613 00 Brno Czech Republic
| | - Pavel Horky
- Department of Animal Nutrition and Forage Production Mendel University in Brno Zemedelska 1 613 00 Brno Czech Republic
| | - Veronika Mlejnkova
- Department of Animal Nutrition and Forage Production Mendel University in Brno Zemedelska 1 613 00 Brno Czech Republic
| | - Jiri Skladanka
- Department of Animal Nutrition and Forage Production Mendel University in Brno Zemedelska 1 613 00 Brno Czech Republic
| | - Bozena Hosnedlova
- Department of Research and Development Prevention Medicals Tovarni 342 742 13 Studenka-Butovice Czech Republic
- Department of Viticulture and Enology, Faculty of Horticulture Mendel University in Brno Valticka 337 CZ-691 44 Lednice Czech Republic
| | - Branislav Ruttkay‐Nedecky
- Department of Research and Development Prevention Medicals Tovarni 342 742 13 Studenka-Butovice Czech Republic
- Department of Viticulture and Enology, Faculty of Horticulture Mendel University in Brno Valticka 337 CZ-691 44 Lednice Czech Republic
- Department of Molecular Pharmacy, Faculty of Pharmacy Masaryk University Palackeho 1946/1 612 00 Brno Czech Republic
| | - Carlos Fernandez
- School of Pharmacy and Life Sciences Robert Gordon University Garthdee Road AB10 7QB Aberdeen UK
| | - Rene Kizek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy Masaryk University Palackeho 1946/1 612 00 Brno Czech Republic
- Department of Research and Development Prevention Medicals Tovarni 342 742 13 Studenka-Butovice Czech Republic
- Department of Viticulture and Enology, Faculty of Horticulture Mendel University in Brno Valticka 337 CZ-691 44 Lednice Czech Republic
- Department of Biomedical and Environmental Analyses, Faculty of Pharmacy with Division of Laboratory Medicine Wroclaw Medical University Borowska 211 50-556 Wroclaw Poland
| |
Collapse
|
12
|
Kakar MU, Kakar IU, Mehboob MZ, Zada S, Soomro H, Umair M, Iqbal I, Umer M, Shaheen S, Syed SF, Deng Y, Dai R. A review on polysaccharides from Artemisia sphaerocephala Krasch seeds, their extraction, modification, structure, and applications. Carbohydr Polym 2020; 252:117113. [PMID: 33183585 DOI: 10.1016/j.carbpol.2020.117113] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/10/2020] [Accepted: 09/12/2020] [Indexed: 01/16/2023]
Abstract
Artemisia sphaerocephala Krasch (ASK) is an important member of Compositae (Asteraceae) family. Its seeds have been widely used as traditional medicine and to improve the quality of food. Water soluble and water insoluble polysaccharides are found in the seeds of this plant. Research has been conducted on the extraction of polysaccharides, their modification and determination of their structure. To date different techniques for extraction purposes have been applied which are reviewed here. Antioxidant, antidiabetic, anti-obesogenic, antitumor, and immunomodulatory activities have been explored using in vivo and in vitro methods. Moreover, these polysaccharides have been used as packaging material and as a sensing component for monitoring the freshness of packaged food. Some experimental results have shown that the quality of foods is also improved by using them as a food additive. We have also indicated some of the potential areas that are needed to be explored.
Collapse
Affiliation(s)
- Mohib Ullah Kakar
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, Beijing Institute of Technology (BIT), Beijing, 100081, PR China; Faculty of Marine Sciences, Lasbela University of Agriculture Water and Marine Sciences (LUAWMS), Uthal, 90150, Balochistan, Pakistan
| | - Ihsan Ullah Kakar
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture Water and Marine Sciences (LUAWMS), Uthal, 90150, Balochistan, Pakistan
| | - Muhammad Zubair Mehboob
- CAS Center for Excellence in Biotic Interaction, College of Life Sciences, University of Chinese Academy of Science, Beijing, 100049, China
| | - Shah Zada
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing, 100083, PR China
| | | | - Muhammad Umair
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Imran Iqbal
- Department of Information and Computational Sciences, School of Mathematical Sciences and LMAM, Peking University, Beijing, 100871, China
| | - Muhammad Umer
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture Water and Marine Sciences (LUAWMS), Uthal, 90150, Balochistan, Pakistan
| | - Shabnam Shaheen
- Department of Higher Education, Government Girls Degree College Lakki Marwat, City Lakki Marwat, KPK, Pakistan
| | - Shahid Faraz Syed
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture Water and Marine Sciences (LUAWMS), Uthal, 90150, Balochistan, Pakistan
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, Beijing Institute of Technology (BIT), Beijing, 100081, PR China
| | - Rongji Dai
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, Beijing Institute of Technology (BIT), Beijing, 100081, PR China.
| |
Collapse
|
13
|
Huang W, Wang L, Wei Y, Cao M, Xie H, Wu D. Fabrication of lysozyme/κ-carrageenan complex nanoparticles as a novel carrier to enhance the stability and in vitro release of curcumin. Int J Biol Macromol 2020; 146:444-452. [DOI: 10.1016/j.ijbiomac.2020.01.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/21/2019] [Accepted: 01/01/2020] [Indexed: 12/20/2022]
|
14
|
Yao X, Yao X, Xu K, Wu K, Chen X, Liu N, Nishinari K, Phillips GO, Jiang F. Trivalent iron induced gelation in Artemisia sphaerocephala Krasch. polysaccharide. Int J Biol Macromol 2020; 144:690-697. [DOI: 10.1016/j.ijbiomac.2019.12.123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/02/2019] [Accepted: 12/14/2019] [Indexed: 11/24/2022]
|
15
|
Li D, Liu A, Liu M, Li X, Guo H, Zuo C, Li Y. The intestine-responsive lysozyme nanoparticles-in-oxidized starch microgels with mucoadhesive and penetrating properties for improved epithelium absorption of quercetin. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105309] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
16
|
Nanoscale Delivery System for Nutraceuticals: Preparation, Application, Characterization, Safety, and Future Trends. FOOD ENGINEERING REVIEWS 2019. [DOI: 10.1007/s12393-019-09208-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Amani S, Mohamadnia Z, Mahdavi A. pH-responsive hybrid magnetic polyelectrolyte complex based on alginate/BSA as efficient nanocarrier for curcumin encapsulation and delivery. Int J Biol Macromol 2019; 141:1258-1270. [DOI: 10.1016/j.ijbiomac.2019.09.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/12/2019] [Accepted: 09/06/2019] [Indexed: 12/13/2022]
|
18
|
Chang C, Meikle TG, Su Y, Wang X, Dekiwadia C, Drummond CJ, Conn CE, Yang Y. Encapsulation in egg white protein nanoparticles protects anti-oxidant activity of curcumin. Food Chem 2019; 280:65-72. [DOI: 10.1016/j.foodchem.2018.11.124] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/21/2018] [Accepted: 11/22/2018] [Indexed: 11/15/2022]
|
19
|
Enhancing Curcumin Oral Bioavailability Through Nanoformulations. Eur J Drug Metab Pharmacokinet 2019; 44:459-480. [DOI: 10.1007/s13318-019-00545-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Liu C, Zhang Z, Kong Q, Zhang R, Yang X. Enhancing the antitumor activity of tea polyphenols encapsulated in biodegradable nanogels by macromolecular self-assembly. RSC Adv 2019; 9:10004-10016. [PMID: 35520909 PMCID: PMC9062372 DOI: 10.1039/c8ra07783e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 03/02/2019] [Indexed: 11/21/2022] Open
Abstract
Nanogels (NGs) with desirable stability have emerged as a promising platform for biomedical applications. Herein, a convenient approach was developed to encapsulate and protect tea polyphenols (TPs) by macromolecular self-assembly of lysozyme (Ly) and carboxymethyl cellulose (CMC) through a heating treatment. Biodegradable Ly–CMC NGs were formed on the basis of molecules driven by electrostatic interaction and hydrophobic forces. The particle size and morphology of the Ly–CMC NGs were analyzed using a Malvern particle size analyzer, fluorescence spectrophotometer, and scanning electron microscope. The results showed that the heated NGs were spherical with better stability and smaller particle size. The encapsulation efficiency of TP-loaded NGs was 89.05 ± 3.14%, and it indicated that the Ly–CMC NGs may have a strong binding force with TPs. Moreover, TP-loaded NGs showed a sustained release feature. The DPPH and ABTS-scavenging rates of the TP-loaded NGs were 76.5% and 86.1%, respectively. The antitumor activity of the TP-loaded NGs can effectively inhibit the proliferation of HepG2 cells. Furthermore, TP-loaded NGs were proven to significantly enhance the induction of apoptosis in hepatoma cells and exhibit obvious cell cycle arrest. Our results demonstrate that the Ly–CMC NGs have extensive application prospects as a biocompatible and biodegradable delivery carrier of food functional factors to improve their antitumor effects. Fabrication of biodegradable TP-loaded Ly and CMC nanogels via self-assembly and the study of their controlled release and absorption process in vivo.![]()
Collapse
Affiliation(s)
- Chen Liu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710119
- China
| | - Zhong Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710119
- China
| | - Qingjun Kong
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710119
- China
| | - Runguang Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710119
- China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710119
- China
| |
Collapse
|