1
|
Qi L, Duan R, Zhou J, Guo Y, Zhang C. Novel osteogenic peptide from bovine bone collagen hydrolysate: Targeted screening, molecular mechanism, and stability analysis. Food Chem 2024; 459:140359. [PMID: 38996641 DOI: 10.1016/j.foodchem.2024.140359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/07/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024]
Abstract
This study aimed to screen for a novel osteogenic peptide based on the calcium-sensing receptor (CaSR) and explore its molecular mechanism and gastrointestinal stability. In this study, a novel osteogenic peptide (Phe-Ser-Gly-Leu, FSGL) derived from bovine bone collagen hydrolysate was successfully screened by molecular docking and synthesised by solid phase peptide synthesis for further analysis. Cell experiments showed that FSGL significantly enhanced the osteogenic activity of MC3T3-E1 cells by acting on CaSR, including proliferation (152.53%), differentiation, and mineralization. Molecular docking and molecular dynamics further demonstrated that FSGL was a potential allosteric activator of CaSR, that turned on the activation switch of CaSR by closing the Venus flytrap (VFT) domain and driving the two protein chains in the VFT domain to easily form dimers. In addition, 96.03% of the novel osteogenic peptide FSGL was stable during gastrointestinal digestion. Therefore, FSGL showed substantial potential for enhancing the osteogenic activity of osteoblasts. This study provided new insights for the application of CaSR in the targeted screening of osteogenic peptides to improve bone health.
Collapse
Affiliation(s)
- Liwei Qi
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ruipei Duan
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiaojiao Zhou
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yujie Guo
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Chunhui Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
2
|
Yang M, Gao Z, Cheng S, Wang Z, Ei-Seedi H, Du M. Novel Peptide Derived from Gadus morhua Stimulates Osteoblastic Differentiation and Mineralization through Wnt/β-Catenin and BMP Signaling Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9691-9702. [PMID: 38639219 DOI: 10.1021/acs.jafc.3c06700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Marine biodiversity offers a wide array of active ingredient resources. Gadus morhua peptides (GMPs) showed excellent osteoprotective effects in ovariectomized mice. However, the potential osteogenesis mechanisms of key osteogenic peptides in GMP were seldom reported. In this study, a novel osteogenic peptide (GETNPADSKPGSIR, P-GM-2) was screened from GMP. P-GM-2 has a high stability coefficient and a strong interaction with epidermal growth factor receptor. Cell culture experiments showed that P-GM-2 stimulated the expression of osteogenic differentiation markers to promote osteoblast proliferation, differentiation, and mineralization. Additionally, P-GM-2 phosphorylates GSK-3β, leading to the stabilization of β-catenin and its translocation to the nucleus, thus initiating the activation of the Wnt/β-catenin signaling pathway. Meanwhile, P-GM-2 could also regulate the osteogenic differentiation of preosteoblasts by triggering the BMP/Smad and mitogen-activated protein kinase signaling pathways. Further validation with specific inhibitors (ICG001 and Noggin) demonstrated that the osteogenic activity of P-GM-2 was revealed by the activation of the BMP and Wnt/β-catenin pathways. In summary, these results provide theoretical and practical insights into P-GM-2 as an effective antiosteoporosis active ingredient.
Collapse
Affiliation(s)
- Meilian Yang
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China
| | - Zengli Gao
- Inner Mongolia Enterprise Key Laboratory of Dairy Nutrition, Health & Safety, Inner Mongolia Mengniu Dairy (Group) Co. Ltd., Huhhot 011500, P. R. China
| | - Shuzhen Cheng
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China
| | - Zhenyu Wang
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China
| | - Hesham Ei-Seedi
- Pharmacognosy Group, Department of Medicinal Chemistry, Uppsala Biomedical Center, Uppsala University, Uppsala 75 123, Sweden
| | - Ming Du
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
3
|
Lao L, Jian H, Liao W, Zeng C, Liu G, Cao Y, Miao J. Casein Calcium-Binding Peptides: Preparation, Characterization, and Promotion of Calcium Uptake in Caco-2 Cell Monolayers. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
4
|
Wu X, Wang F, Cai X, Wang S. Characteristics and osteogenic mechanism of glycosylated peptides-calcium chelate. Curr Res Food Sci 2022; 5:1965-1975. [PMID: 36312881 PMCID: PMC9596740 DOI: 10.1016/j.crfs.2022.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/09/2022] [Accepted: 10/06/2022] [Indexed: 11/09/2022] Open
Abstract
Finding effective practical components to promote bone mineralization from the diet has become an effective method to regulate bone mass. In this study, peptides-calcium chelate derived from Crimson Snapper scales protein hydrolysates (CSPHs), and xylooligosaccharide (XOS)-peptides-calcium chelate prepared by transglutaminase (TGase) pathway, named CSPHs-Ca and XOS-CSPHs-Ca-TG, were used to explore the effects of glycosylation on their structural properties and osteogenic activity in vitro. Results showed that XOS-CSPHs-Ca-TG had better calcium phosphate crystallization inhibition activity with more unified structures than CSPHs-Ca, and could effectively maintain a stable calcium content in the gastrointestinal tract. Meanwhile, the glycosylated peptide-calcium chelate could accelerate the calcium transport efficiency in the Caco-2 cell monolayer, up to 3.54 folds of the control group. Moreover, XOS-CSPHs-Ca-TG exhibited prominent osteogenic effects by promoting the proliferation of MC3T3-E1 cells, increasing the secretion of osteogenic related factors, and accelerating the formation of intracellular mineralized nodules. RT-qPCR results further confirmed that this beneficial effect of XOS-CSPHs-Ca-TG was achieved by activating the Wnt/β-catenin signaling pathway. These results suggested that glycosylation might be a promising method for optimizing structural properties and osteogenic activity of peptide-calcium chelate.
Collapse
Affiliation(s)
- Xiaoping Wu
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350108, China,College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Fangfang Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Xixi Cai
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China,Corresponding author.
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China,Corresponding author.
| |
Collapse
|
5
|
Huang W, Yu K, Kang M, Wang Q, Liao W, Liang P, Liu G, Cao Y, Miao J. Identification and functional analysis of three novel osteogenic peptides isolated from tilapia scale collagen hydrolysate. Food Res Int 2022; 162:111993. [DOI: 10.1016/j.foodres.2022.111993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/04/2022]
|
6
|
Huang W, Lao L, Deng Y, Li Z, Liao W, Duan S, Xiao S, Cao Y, Miao J. Preparation, characterization, and osteogenic activity mechanism of casein phosphopeptide-calcium chelate. Front Nutr 2022; 9:960228. [PMID: 35983483 PMCID: PMC9378869 DOI: 10.3389/fnut.2022.960228] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/07/2022] [Indexed: 12/25/2022] Open
Abstract
Casein phosphopeptides (CPPs) are good at calcium-binding and intestinal calcium absorption, but there are few studies on the osteogenic activity of CPPs. In this study, the preparation of casein phosphopeptide calcium chelate (CPP-Ca) was optimized on the basis of previous studies, and its peptide-calcium chelating activity was characterized. Subsequently, the effects of CPP-Ca on the proliferation, differentiation, and mineralization of MC3T3-E1 cells were studied, and the differentiation mechanism of CPP-Ca on MC3T3-E1 cells was further elucidated by RNA sequencing (RNA-seq). The results showed that the calcium chelation rate of CPPs was 23.37%, and the calcium content of CPP-Ca reached 2.64 × 105 mg/kg. The test results of Ultraviolet–Visible absorption spectroscopy (UV) and Fourier transform infrared spectroscopy (FTIR) indicated that carboxyl oxygen and amino nitrogen atoms of CPPs might be chelated with calcium during the chelation. Compared with the control group, the proliferation of MC3T3-E1 cells treated with 250 μg/mL of CPP-Ca increased by 21.65%, 26.43%, and 28.43% at 24, 48, and 72 h, respectively, and the alkaline phosphatase (ALP) activity and mineralized calcium nodules of MC3T3-E1 cells were notably increased by 55% and 72%. RNA-seq results showed that 321 differentially expressed genes (DEGs) were found in MC3T3-E1 cells treated with CPP-Ca, including 121 upregulated and 200 downregulated genes. Gene ontology (GO) revealed that the DEGs mainly played important roles in the regulation of cellular components. The enrichment of the Kyoto Encyclopedia of Genes and Genomes Database (KEGG) pathway indicated that the AMPK, PI3K-Akt, MAPK, and Wnt signaling pathways were involved in the differentiation of MC3T3-E1 cells. The results of a quantitative real-time PCR (qRT-PCR) showed that compared with the blank control group, the mRNA expressions of Apolipoprotein D (APOD), Osteoglycin (OGN), and Insulin-like growth factor (IGF1) were significantly increased by 2.6, 2.0 and 3.0 times, respectively, while the mRNA levels of NOTUM, WIF1, and LRP4 notably decreased to 2.3, 2.1, and 4.2 times, respectively, which were consistent both in GO functional and KEGG enrichment pathway analysis. This study provided a theoretical basis for CPP-Ca as a nutritional additive in the treatment and prevention of osteoporosis.
Collapse
Affiliation(s)
- Wen Huang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Linhui Lao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yuliang Deng
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Ziwei Li
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Wanwen Liao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Shan Duan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Suyao Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jianyin Miao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Guangxi Normal University), Guilin, China.,Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin, China
| |
Collapse
|
7
|
Su J, Chen T, Liao D, Wang Y, Su Y, Liu S, Chen X, Ruifang Q, Jiang L, Liu Z. Novel peptides extracted from Muraenesox cinereus bone promote calcium transport, osteoblast differentiation, and calcium absorption. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
8
|
Yang Y, Wei Q, An R, Zhang HM, Shen JY, Qin XY, Han XL, Li J, Li XW, Gao XM, He J, Mao HP. Anti-osteoporosis effect of Semen Cuscutae in ovariectomized mice through inhibition of bone resorption by osteoclasts. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114834. [PMID: 34801609 DOI: 10.1016/j.jep.2021.114834] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/02/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Semen Cuscutae, called Tu-si-zi in Chinese, is a kind of dried mature seed in the Convolvulaceae family. It mainly distributes in China, Korea, Pakistan, Vietnam, India and Thailand. It is used as a kidney-tonifying drug for treatment of aging related diseases such as osteoporosis in traditional Chinese medicine. However, the exact mechanisms on bone resorption are poorly studied. AIM OF THE STUDY The aim of this study was to investigate the potential effect of Semen Cuscutae on ovariectomy (OVX)-induced osteoporosis in mice and clarify the exact mechanisms by which Semen Cuscutae exert the anti-osteoporosis effect. MATERIALS AND METHODS Qualitative and quantitative analyses of Semen Cuscutae were performed by UPLC-Q-TOF-MS and HPLC-MS/MS, respectively. Changes in bone mineral density (BMD) induced by OVX in mice were measured by dual-energy X-ray absorptiometry and micro-computed tomography (μCT). Tartrate-resistant acid phosphatase (TRAP) staining as well as hematoxylin and eosin (HE) staining were used to observe bone microarchitectural changes. ELISA kits were used to assess the therapeutic effects of Semen Cuscutae on the serum levels of osteoprotegerin (OPG), tartrate-resistant acid phosphatase 5b (TRACP-5b), and receptor activator of nuclear factor-κB (RANKL). The effect of Semen Cuscutae on primary cell viability was assessed using CCK-8 and anti-tartrate phosphatase assays. TRAP staining and actin ring staining were used to observe the effect of Semen Cuscutae on osteoclast differentiation. Western blotting was used to measure the effects of Semen Cuscutae on expressions of NFATC1, c-Src kinase, and c-fos. RESULTS Results from UPLC-Q-TOF-MS showed that the main components of Semen Cuscutae were flavonoid compounds that included quercitrin, quercetin, hyperoside, caffeic acid, rutin, chlorogenic acid, luteolin, apigenin, kaempferol, isoquercetin, cryptochlorogenic acid, isorhamnetin-3-O-glucoside, and astragalin. After the Semen Cuscutae extract was orally administered to OVX mice, bone density increased (P < 0.01) and bone microstructure was significantly improved (P < 0.01 or 0.05). Additionally, Semen Cuscutae exhibited a significant descending effect in the levels of serum TRACP-5b and RANKL, while there was a significant increase in OPG in the Semen Cuscutae group compared with the OVX group, especially at high doses. Moreover, we found that increasing of c-fos, c-Src kinase, and NFATC1 protein expressions were reversed by Semen Cuscutae in vitro and in vivo. CONCLUSIONS Our results showed that Semen Cuscutae exhibited anti-osteoporosis effects through the c-fos/c-Src kinase/NFATC1 signaling pathway.
Collapse
Affiliation(s)
- Yun Yang
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, China
| | - Qiu Wei
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, China
| | - Ran An
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, China
| | - Hua-Mei Zhang
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, China
| | - Jia-Yuan Shen
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, China
| | - Xiao-Yan Qin
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, China
| | - Xiao-Ling Han
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, China
| | - Jie Li
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, China
| | - Xiao-Wei Li
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, China
| | - Xiu-Mei Gao
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, China
| | - Jun He
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, China.
| | - Hao-Ping Mao
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, China.
| |
Collapse
|
9
|
Qin X, Shen Q, Guo Y, Li X, Liu J, Ye M, Wang H, Jia W, Zhang C. Physicochemical properties, digestibility and anti-osteoporosis effect of yak bone powder with different particle sizes. Food Res Int 2021; 145:110401. [PMID: 34112404 DOI: 10.1016/j.foodres.2021.110401] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 04/01/2021] [Accepted: 05/07/2021] [Indexed: 12/20/2022]
Abstract
As a kind of promising resource, animal bone has been widely processed into functional foods. However, there is little research about the effect of particle size on the physicochemical properties and digestibility of yak bone powder (YBP), as well as its anti-osteoporosis activity. In this study, the YBP with median particle sizes (MPS) ranging from 19.68 to 128.37 μm were prepared, and their digestibility and anti-osteoporosis activity were investigated. The results showed that smaller MPS significantly increased water holding capacity and protein solubility without changing composition. The MPS reduction greatly promoted protein digestion, producing more peptides<3 kDa and free amino acids while decreased Ca2+ and P5+ release during gastrointestinal digestion. The in vivo results revealed the positive effect of YBP on ovariectomy-induced osteoporosis in rats. The bone mineral density of ovariectomized (OVX) rats was obviously improved by regulating bone turnover markers (B-ALP, OCN, S-CTX, ES and TRAP), thus potentially shedding light on osteoporosis remission. However, different MPS exhibited a weak effect on osteoporosis in OVX rats. Therefore, YBP could be produced in relatively large particle size without sacrificing food sensory quality, the processing time of which could also be shortened for higher productivity and lower cost.
Collapse
Affiliation(s)
- Xiaojie Qin
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Biobased Chemistry and Technology, Wageningen University and Research, Wageningen 6700AA, Netherlands
| | - Qingshan Shen
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yujie Guo
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xia Li
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiqian Liu
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Mengliang Ye
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hang Wang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wei Jia
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Hulunbuir Muyuankangtai Biotechnology Co. Ltd, Arongqi Logistics Business Park, Hulunbuir, Inner Mongolia, Hulunbuir, 021000, China
| | - Chunhui Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
10
|
Ye M, Zhang C, Jia W, Shen Q, Qin X, Zhang H, Zhu L. Metabolomics strategy reveals the osteogenic mechanism of yak (Bos grunniens) bone collagen peptides on ovariectomy-induced osteoporosis in rats. Food Funct 2020; 11:1498-1512. [PMID: 31993619 DOI: 10.1039/c9fo01944h] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Our previous work demonstrated that yak bone collagen peptides (YBP) possessed excellent osteogenic activity in vitro. However, associations between YBP and osteoporosis were less established, and the positive effect and underlying mechanism of YBP in the treatment of osteoporotic rats in vivo remained unclear. Herein, ovariectomized rats were intragastrically administered with YBP or 17β-estradiol for 12 weeks. Bone turnover markers, bone biomechanical parameters and bone microarchitecture were investigated to identify the specific changes of potential antagonistic effects of YBP on ovariectomized rats. Then, serum samples were analyzed by UPLC/Q-TOF-MS to identify metabolites. The results showed that YBP treatment remarkably altered the content of serum bone turnover markers and prevented the ovariectomy-induced deterioration of bone mechanical and microarchitecture characteristics. A total of forty-one biomarkers for which levels changed markedly upon treatment have been identified based on non-targeted metabolomics. Among them, twenty-one metabolites displayed a downward expression level, while twenty metabolites showed an upward expression level in the YBP group and finally were selected as potential biomarkers. The levels of these biomarkers displayed significant alterations and a tendency to be restored to normal values in YBP treated osteoporotic rats. A systematic network analysis of their corresponding pathways delineated that the protective or recovery effect of YBP on osteoporosis occurred primarily by regulating the amino acid metabolism and lipid metabolism (especially unsaturated fatty acid). Collectively, these findings highlight that such peptides hold promise in further advancement as a natural alternative for functional and health-promoting foods, which could be potentially used in mediated treatment of osteoporosis.
Collapse
Affiliation(s)
- Mengliang Ye
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | | | | | | | | | | | | |
Collapse
|
11
|
Hu Z, Tang Y, Yue Z, Zheng W, Xiong Z. The facile synthesis of copper oxide quantum dots on chitosan with assistance of phyto-angelica for enhancing the human osteoblast activity to the application of osteoporosis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 191:6-12. [PMID: 30557790 DOI: 10.1016/j.jphotobiol.2018.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 01/22/2023]
Abstract
Osteoblasts are an important key factor for the pathogenesis of several bone-related diseases, notably in osteoporosis. Osteoporosis is a disorder categorized based on the bone mineral density (BMD) and an alteration in the bone micro-architecture had been considered as the major determinant for increasing the fracture risk. The available medicine for curing the osteoporosis shows a minimal or no activity against the genesis or function of osteoblasts. The present study was conducted to determine the influence of phyto Angelica species (Ang.) mediated synthesized copper quantum dots decorated chitosan on human osteoblast cells for application of osteoporosis. The phyto compound of Angelica sp. was extracted by ethanol as solvent and it has been characterized through spectral analyses. An Angelica sp. mediated synthesized copper oxide quantum dots (CuO QDs) and the presence of CuO QDs on chitosan have been analyzed and exhibited by important spectral investigations. The morphological observation of CuO QDs on the chitosan (CS) was visualized by the microscopic analyses. The MTT assay results showed that cell growth of CuO QDs/CS-Ang. by the concentration dependent. The highest cell growth (87%) was noted at 5 μg/mL followed by 80 and 77% at 15 and 25 μg/mL respectively. The functional groups and potential compounds of Angelica sp. with CuO QDs/CS has been improved the osteoblast cell activity as prophylactic potentials against osteoporosis.
Collapse
Affiliation(s)
- Zhongqing Hu
- Department of Orthopedics, Xiaoshan Traditional Chinese Medical Hospital, 156 Yucai Road, Hangzhou, Zhejiang 311201, PR China
| | - Yanghua Tang
- Department of Orthopedics, Xiaoshan Traditional Chinese Medical Hospital, 156 Yucai Road, Hangzhou, Zhejiang 311201, PR China.
| | - Zhenshuang Yue
- Department of Orthopedics, Xiaoshan Traditional Chinese Medical Hospital, 156 Yucai Road, Hangzhou, Zhejiang 311201, PR China
| | - Wenjie Zheng
- Department of Orthopedics, Xiaoshan Traditional Chinese Medical Hospital, 156 Yucai Road, Hangzhou, Zhejiang 311201, PR China
| | - Zhenfei Xiong
- Department of Orthopedics, Xiaoshan Traditional Chinese Medical Hospital, 156 Yucai Road, Hangzhou, Zhejiang 311201, PR China
| |
Collapse
|