1
|
Taldaev A, Svotin AA, Obukhov SI, Terekhov RP, Selivanova IA. Modification of biopharmaceutical parameters of flavonoids: a review. Front Chem 2025; 13:1602967. [PMID: 40365179 PMCID: PMC12069051 DOI: 10.3389/fchem.2025.1602967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Accepted: 04/21/2025] [Indexed: 05/15/2025] Open
Abstract
Flavonoids are natural organic compounds that are derivatives of diphenylpropane. This group of polyphenols can be found in multiple natural sources and they exhibit a variety of biological effects. Despite the wide array of beneficial properties, the development of drugs based on these compounds is hindered by their low bioavailability. Although the substantial body of information available on strategies to enhance the solubility and bioavailability of flavonoids, this knowledge remains fragmented. Therefore, the aim of this study was to consolidate and systematize scientific data on methods for increasing the solubility and bioavailability of flavonoid compounds without changing their initial molecular structures. Throughout the investigation, it was determined that the most prevalent methods for increasing solubility and bioavailability include co-crystallization, formation of phospholipid and inclusion complexes, and the creation of nanostructures. Although there were no pronounced differences observed in enhancing solubility, the impact of these methods on pharmacokinetic parameters was established. It was found that the production of inclusion complexes and nanostructures leads to the greatest increase in the area under the pharmacokinetic curve by an average of 4.2 and 3.7 times, respectively. The least effect was noted for phytosomes, where this parameter for the modified forms exceeded the initial value by only 1.7 times. Phospholipid complexes exhibited a longer average half-elimination time than all other modifications, achieving a 2.1-fold increase. For nanostructures and micelles, a substantial increase in maximum concentration of the active substance in blood plasma was observed, reaching an average of 5.4 times for both types of modifications. During the systematization and generalization of the data, a high level of heterogeneity in solubility assessment methods across various studies was revealed, complicating comparisons of original data obtained by different researchers. The findings of this review are crucial for researchers investigating the bioavailability of flavonoid compounds and will facilitate the selection of the most effective methods based on the desired outcomes for solubility and bioavailability.
Collapse
Affiliation(s)
- Amir Taldaev
- Laboratory for the Study of Single Biomacromolecules, Institute of Biomedical Chemistry, Moscow, Russia
- Laboratory of Biomolecular NMR-Spectroscopy, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Artem A. Svotin
- Nelyubin Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Semyon I. Obukhov
- Nelyubin Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Roman P. Terekhov
- Nelyubin Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Irina A. Selivanova
- Nelyubin Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
2
|
Liu X, Dong W, Zhang Y, Tian Y, Xiao Y, Yang M, Yuan X, Li G, Liu J, Kai M. In vitro and in vivo evaluation of antibacterial activity and mechanism of luteolin from Humulus scandens against Escherichia coli from chicken. Poult Sci 2024; 103:104132. [PMID: 39208485 PMCID: PMC11399789 DOI: 10.1016/j.psj.2024.104132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/08/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Resistance of Escherichia coli (E.coli) to antibiotics has steadily increased over time; hence, there is an urgent need to develop safer alternatives to antibiotics. The present study aimed to evaluate the effect of luteolin (Lut) on E. coli from chicken. The bioactive compound Lut from Humulus scandens was selected by network pharmacology and molecular docking analyses. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and confocal laser scanning microscopy (CLSM) were used to observe the effects of Lut on the morphology and structure of E. coli cells. The data-independent acquisition (DIA) method was used to analyze protein expression level of E. coli before and after Lut treatment. The in vivo evaluation of the antibacterial, anti-inflammatory, and oxidative effects of Lut on E.coli was conducted using E.coli isolated strains infected the SPF chicken model. The network pharmacology analysis revealed 19 distinctive bioactive compounds such as Lut and β-sitosterol in H. scandens; furthermore, 30 core targets were selected from H. scandens. The KEGG enrichment analysis showed that the PI3K-Akt, TNF, MAPK, IL-17, JAK-STAT, and HIF-1 pathways were related from H. scandens. Based on the results of the network pharmacology analysis, Lut was subjected to screening by molecular docking analysis to determine its antibacterial effect on E. coli and the associated mechanism of action. The minimum inhibitory concentration (MIC) of Lut against E. coli standard strains was 500 µg/mL. SEM, TEM, and CLSM results indicated that Lut damaged the cell wall and cell membrane of E. coli strains and destroyed the cell structure, leading to cell death.The expression level of membrane structure, Phenylalanine metabolism and some other metabolic pathways in E.coli changed after treatment with Lut (P < 0.05). In vivo experiments in the SPF chicken model showed that Lut treatment alleviated the decline in the growth performance of chickens (P < 0.05), prevented pathological changes in the correspond ding organs and suppressed the inflammatory response induced by E. coli infection (P < 0.05), improved the immunity and antioxidant capacity of chickens (P < 0.05), and protected them against infection with E. coli strains. To summarize, Lut from H. scandens can inhibit E. coli growth by damaging the cell membrane structureand affecting the expression level of some metabolic proteins. In vivo experiments also showed that Lut can significantly reduce the damage caused by E. coli isolates on SPF chickens, improve their antioxidant capacity and immunity, and reduce inflammatory responses following E. coli infection.
Collapse
Affiliation(s)
- Xia Liu
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Jinan Key Laboratory for Agricultural Experimental Animal and Comparative Medicine, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Jinan 250023, China; College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 271018, Taian, China
| | - Wenwen Dong
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Jinan Key Laboratory for Agricultural Experimental Animal and Comparative Medicine, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Jinan 250023, China
| | - Yuxia Zhang
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Jinan Key Laboratory for Agricultural Experimental Animal and Comparative Medicine, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Jinan 250023, China
| | - Ye Tian
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Jinan Key Laboratory for Agricultural Experimental Animal and Comparative Medicine, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Jinan 250023, China
| | - Yaqing Xiao
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Jinan Key Laboratory for Agricultural Experimental Animal and Comparative Medicine, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Jinan 250023, China; College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Menghao Yang
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Jinan Key Laboratory for Agricultural Experimental Animal and Comparative Medicine, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Jinan 250023, China; College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 271018, Taian, China
| | - Xiaoyuan Yuan
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Jinan Key Laboratory for Agricultural Experimental Animal and Comparative Medicine, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Jinan 250023, China
| | - Guiming Li
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Jinan Key Laboratory for Agricultural Experimental Animal and Comparative Medicine, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Jinan 250023, China; Shandong Blue Sea ecological agriculture Co., LTD, Dongying 257100, China
| | - Jianzhu Liu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 271018, Taian, China
| | - Meng Kai
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Jinan Key Laboratory for Agricultural Experimental Animal and Comparative Medicine, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Jinan 250023, China.
| |
Collapse
|
3
|
Mod Razif MRF, Chan SY, Chew YL, Hassan M, Ahmad Hisham S, Abdul Rahman S, Mai CW, Teo MYM, Kee PE, Khoo KS, Lee SK, Liew KB. Recent Developments in Luteolin-Loaded Nanoformulations for Enhanced Anti-Carcinogenic Activities: Insights from In Vitro and In Vivo Studies. SCI 2024; 6:68. [DOI: 10.3390/sci6040068] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2025] Open
Abstract
With approximately 18 million people affected by cancer in 2020 globally, scientists are exploring innovative approaches to develop effective treatments for various types of cancer. Traditional chemotherapy drugs, although effective against cancer cells, often lead to significant side effects on healthy tissues, such as hair loss, anemia, and nausea. To discover safer alternatives, researchers are investigating natural bioactive compounds found abundantly in plants. Luteolin, a flavonoid found in celery and artichokes, stands out due to its diverse anti-carcinogenic properties, including inhibiting proliferation, inducing apoptosis, activating autophagy, and inhibiting angiogenesis and metastasis. However, the therapeutic potential of luteolin is hindered by challenges related to its bioavailability and solubility. This critical review explores the specific anti-carcinogenic properties of luteolin while analyzing the impact of its limited bioavailability and solubility on effectiveness. Additionally, it investigates the outcomes of encapsulating luteolin in nanoformulations, providing insights into potential strategies for enhancing its anti-carcinogenic effects. Finally, the review compares the efficacy of luteolin with and without nanoformulations. This review provides valuable insights into the potential of utilizing luteolin-loaded nanoformulations as a safer and more effective method for treating cancer, contributing to the ongoing efforts in improving cancer care and outcomes worldwide.
Collapse
Affiliation(s)
| | - Siok Yee Chan
- School of Pharmaceutical Science, Universiti Sains Malaysia, Jalan Universiti, Gelugor 11700, PNG, Malaysia
| | - Yik-Ling Chew
- Faculty of Pharmaceutical Sciences, UCSI University, UCSI Heights, Jalan Puncak Menara Gading, Taman Connaught, Cheras 56000, KUL, Malaysia
| | - Masriana Hassan
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Jalan Universiti 1, Serdang 43400, SGR, Malaysia
| | - Shairyzah Ahmad Hisham
- Faculty of Pharmacy, University of Cyberjaya, Persiaran Bestari, Cyber 11, Cyberjaya 63000, SGR, Malaysia
| | - Shamima Abdul Rahman
- Faculty of Pharmacy, University of Cyberjaya, Persiaran Bestari, Cyber 11, Cyberjaya 63000, SGR, Malaysia
| | - Chun-Wai Mai
- Faculty of Pharmaceutical Sciences, UCSI University, UCSI Heights, Jalan Puncak Menara Gading, Taman Connaught, Cheras 56000, KUL, Malaysia
| | - Michelle Yee Mun Teo
- Faculty of Applied Sciences, UCSI University, UCSI Heights, Jalan Puncak Menara Gading, Taman Connaught, Cheras 56000, KUL, Malaysia
| | - Phei Er Kee
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chungli, Taoyuan 320, Taiwan
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chungli, Taoyuan 320, Taiwan
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, TN, India
| | - Siew-Keah Lee
- M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Kajang 43000, SGR, Malaysia
| | - Kai Bin Liew
- Faculty of Pharmacy, University of Cyberjaya, Persiaran Bestari, Cyber 11, Cyberjaya 63000, SGR, Malaysia
| |
Collapse
|
4
|
Wang L, Lu S, Liu Y, Lu H, Zheng M, Zhou Z, Cao F, Yang Y, Fang Z. Differential impacts of porous starch versus its octenyl succinic anhydride-modified counterpart on naringin encapsulation, solubilization, and in vitro release. Int J Biol Macromol 2024; 273:132746. [PMID: 38821310 DOI: 10.1016/j.ijbiomac.2024.132746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
The aim of this work was to evaluate the potentials of porous starch (PS) and its octenyl succinic anhydride modified product (OSAPS) as efficient carriers for loading naringin (NA), focusing on encapsulation efficiency (EE, the percentage of adsorbed naringin relative to its initial amount), drug loading (DL, the percentage of naringin in the complex), structural alterations, solubilization and in vitro release of NA using unmodified starch (UMS) and NA as controls. Both the pore diameter and SBET value of PS decreased after esterification with OSA, and a thinner strip-shaped NA (∼145 nm) was observed in the OSAPS-NA complex and (∼150 nm) in the PS-NA complex. OSAPS exhibited reduced short-range ordered structure, as indicated by a lower R1047/1022 (0.73) compared to PS (0.77). Meanwhile, lowest crystallinity (12.81 %) of NA was found in OSAPS-NA. OSAPS-NA exhibited higher EE and DL for NA than PS-NA and a significant increase in NA saturated solubility in deionized water (by 11.63-fold) and simulated digestive fluids (by 24.95-fold) compared to raw NA. OSAPS contained higher proportions of slowly digestible starch and exhibited a lower digestion rate compared to PS, resulting in a longer time for NA release from its complex during the digestion.
Collapse
Affiliation(s)
- Lu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology Research, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Shengmin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology Research, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Yinying Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology Research, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; School of Agriculture and Food, The University of Melbourne, Parkville, Vic 3010, Australia.
| | - Hanyu Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology Research, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; School of Agriculture and Food, The University of Melbourne, Parkville, Vic 3010, Australia
| | - Meiyu Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology Research, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhongjing Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology Research, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Feng Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology Research, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ying Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology Research, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhongxiang Fang
- School of Agriculture and Food, The University of Melbourne, Parkville, Vic 3010, Australia.
| |
Collapse
|
5
|
Yang D, Zhao M, Huang Y, Chen L, Fang J, Liu J, Wang M, Zhao C. β-Cyclodextrin metal-organic framework as a green carrier to improve the dissolution, bioavailability, and liver protective effect of luteolin. Int J Pharm X 2024; 7:100250. [PMID: 38711828 PMCID: PMC11070924 DOI: 10.1016/j.ijpx.2024.100250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/08/2024] Open
Abstract
The incidence of acetaminophen-induced liver injury has increased, but effective prevention methods are limited. Although luteolin has hepatoprotective activity, its low solubility and bioavailability limit its applications. Cyclodextrin metal-organic frameworks (CD-MOFs) possess 3D-network structures and large inner cavities, which make them excellent carriers of poorly soluble drugs. In this study, we used CD-MOFs as carriers to improve the dissolution of luteolin and assessed their antioxidant activity, bioavailability, and hepatoprotective effects. Luteolin was loaded into β-CD-MOF, γ-CD-MOF, β-CD, and γ-CD, and characterized by powder X-ray diffractometry (PXRD) and thermogravimetric analysis (TGA). Our results showed that luteolin-β-CD-MOF was the most stable. The main driving forces were hydrogen bonds and van der Waals forces, as determined by molecular simulation. The loading capacity of luteolin-β-CD-MOF was 14.67 wt%. Compared to raw luteolin, luteolin-β-CD-MOF exhibited a 4.50-fold increase in dissolution and increased antioxidant activity in vitro. Luteolin-β-CD-MOF increased the bioavailability of luteolin by approximately 4.04- and 11.07-fold in healthy rats and liver injured rats induced by acetaminophen in vivo, respectively. As determined by biochemical analysis, luteolin-β-CD-MOF exhibited a better hepatoprotective effect than raw luteolin in rats with acetaminophen-induced liver injury. This study provides a new approach for preventing acetaminophen-mediated liver damage.
Collapse
Affiliation(s)
- Dan Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
- Pharmaceutical Department, Liaoning Provincial People's Hospital, Wenyi Road 33, Shenyang, Liaoning Province, China
| | - Min Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
| | - Yihe Huang
- School of Public Health, Shenyang Medical College, Shenyang, Liaoning Province, China
| | - Liwen Chen
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
| | - Jiqin Fang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
| | - Jiaonan Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
| | - Miao Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
| | - Chunjie Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
| |
Collapse
|
6
|
Kar B, Rout SR, Halder J, Mahanty R, Mishra A, Saha I, Rajwar TK, Dash P, Das C, Pradhan D, Rai VK, Ghosh G, Rath G. The Recent Development of Luteolin-loaded Nanocarrier in Targeting Cancer. Curr Pharm Des 2024; 30:2129-2141. [PMID: 38963114 DOI: 10.2174/0113816128313713240628063301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/11/2024] [Accepted: 06/10/2024] [Indexed: 07/05/2024]
Abstract
INTRODUCTION Luteolin (LUT), a naturally occurring flavonoid found in vegetables, fruits, and herbal medicines, has been extensively studied for its pharmacological activities, including anti-proliferative and anticancer effects on various cancer lines. It also exhibits potent antioxidant properties and pro-apoptotic activities against human cancers. However, its therapeutic potential is hindered by its poor solubility in water (5 μg/ml at 45°C) and low bioavailability. This research on the development of luteolin-loaded nanocarrier aims to overcome these limitations, thereby opening up new possibilities in cancer treatment. METHODS This paper covers several nanoformulations studied to increase the solubility and bioavailability of LUT. The physicochemical characteristics of the nanoformulation that influence luteolin's solubility and bioavailability have been the subject of more in-depth investigation. Furthermore, it examines how LUT's anti-inflammatory and antioxidant properties aid in lessening the side effects of chemotherapy. RESULTS Most nanoformulations, including phytosomes, lipid nanoparticles, liposomes, protein nanoparticles, polymer micelles, nanoemulsions, and metal nanoparticles, have shown promising results in improving the solubility and bioavailability of LUT. This is a significant step forward in enhancing the therapeutic potential of LUT in cancer treatment. Furthermore, the study found that LUT's ability to scavenge free radicals can significantly reduce the side effects of cancer treatment, further highlighting its potential to improve patient outcomes. CONCLUSION Nanoformulations, because of their unique surface and physiochemical properties, improve the solubility and bioavailability of LUT. However, poor in-vitro and in-vivo correlation and scalability of nanoformulations need to be addressed to achieve good clinical performance of LUT in oncology.
Collapse
Affiliation(s)
- Biswakanth Kar
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Sudhanshu Ranjan Rout
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Jitu Halder
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Ritu Mahanty
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Ajit Mishra
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Ivy Saha
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Tushar Kanti Rajwar
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Priyanka Dash
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Chandan Das
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Deepak Pradhan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Vineet Kumar Rai
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Goutam Ghosh
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Goutam Rath
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| |
Collapse
|
7
|
Diedrich C, Zittlau IC, Khalil NM, Leontowich AFG, Freitas RAD, Badea I, Mainardes RM. Optimized Chitosan-Based Nanoemulsion Improves Luteolin Release. Pharmaceutics 2023; 15:1592. [PMID: 37376041 DOI: 10.3390/pharmaceutics15061592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/08/2023] [Accepted: 05/14/2023] [Indexed: 06/29/2023] Open
Abstract
Luteolin (LUT) is a flavonoid found in several edible and medicinal plants. It is recognized for its biological activities such as antioxidant, anti-inflammatory, neuroprotective, and antitumor effects. However, the limited water solubility of LUT leads to poor absorption after oral administration. Nanoencapsulation may improve the solubility of LUT. Nanoemulsions (NE) were selected for the encapsulation of LUT due to their biodegradability, stability, and ability to control drug release. In this work, chitosan (Ch)-based NE was developed to encapsulate luteolin (NECh-LUT). A 23 factorial design was built to obtain a formulation with optimized amounts of oil, water, and surfactants. NECh-LUT showed a mean diameter of 67.5 nm, polydispersity index 0.174, zeta potential of +12.8 mV, and encapsulation efficiency of 85.49%. Transmission electron microscopy revealed spherical shape and rheological analysis verified the Newtonian behavior of NECh-LUT. SAXS technique confirmed the bimodal characteristic of NECh-LUT, while stability analysis confirmed NECh-LUT stability when stored at room temperature for up to 30 days. Finally, in vitro release studies showed LUT controlled release up to 72 h, indicating the promising potential of NECh-LUT to be used as novel therapeutic option to treat several disorders.
Collapse
Affiliation(s)
- Camila Diedrich
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Guarapuava 85040-167, Brazil
| | - Isabella C Zittlau
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Guarapuava 85040-167, Brazil
| | - Najeh M Khalil
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Guarapuava 85040-167, Brazil
| | | | - Rilton A de Freitas
- Biopol, Chemistry Department, Federal University of Parana, Curitiba 81531-980, Brazil
| | - Ildiko Badea
- Drug Design and Discovery Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Rubiana M Mainardes
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Guarapuava 85040-167, Brazil
| |
Collapse
|
8
|
Nanoparticles loaded with pharmacologically active plant-derived natural products: Biomedical applications and toxicity. Colloids Surf B Biointerfaces 2023; 225:113214. [PMID: 36893664 DOI: 10.1016/j.colsurfb.2023.113214] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/08/2023] [Accepted: 02/21/2023] [Indexed: 03/09/2023]
Abstract
Pharmacologically active natural products have played a significant role in the history of drug development. They have acted as sources of therapeutic drugs for various diseases such as cancer and infectious diseases. However, most natural products suffer from poor water solubility and low bioavailability, limiting their clinical applications. The rapid development of nanotechnology has opened up new directions for applying natural products and numerous studies have explored the biomedical applications of nanomaterials loaded with natural products. This review covers the recent research on applying plant-derived natural products (PDNPs) nanomaterials, including nanomedicines loaded with flavonoids, non-flavonoid polyphenols, alkaloids, and quinones, especially their use in treating various diseases. Furthermore, some drugs derived from natural products can be toxic to the body, so the toxicity of them is discussed. This comprehensive review includes fundamental discoveries and exploratory advances in natural product-loaded nanomaterials that may be helpful for future clinical development.
Collapse
|
9
|
Lu Z, Liu J, Zhao L, Wang C, Shi F, Li Z, Liu X, Miao Z. Enhancement of oral bioavailability and anti-colitis effect of luteolin-loaded polymer micelles with RA (rosmarinic acid)-SS-mPEG as carrier. Drug Dev Ind Pharm 2023; 49:17-29. [PMID: 36730369 DOI: 10.1080/03639045.2023.2175850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Polymer micelles were prepared (L-RSPMs) with luteolin and synthetic RA-SS-mPEG polymeric material before evaluation of their anti-inflammatory effect on 2, 4, 6-trinitro-benzene-sulfonic acid (TNBS)-induced ulcerative colitis (UC) model in rats. METHODS The synthetic RA-SS-mPEG was characterized with NMR spectroscopy, before preparation of luteolin-coated RA-SS-mPEG polymer micelles. The in vitro characterization and evaluation of the formulation were accomplished, couple with its pharmacokinetic parameters. The levels of PEG2, MDA, CRP and GSH, as well as concentrations of TNF-α, IL1-β, IL-6 and IL-10 in serum and colon tissue were detected via ELISA kit. The degree of colon injury and inflammation was evaluated via histopathologic examination. RESULTS L-RSPMs displayed small average droplet size (133.40 ± 4.52 nm), uniformly dispersed (PDI: 0.163 ± 0.011), good stability, slow release and enhanced solubility. We observed 353.28% increase in the relative bioavailability of L-RSPMs compared to free luteolin, while the half-life of the micelle was extended by 6.16h. Compared to model (M) group, luteolin (low and high doses) and L-RSPMs (low and high doses) significantly reduced levels of MDA, PEG2, CRP, TNF-α, IL-6 and IL-1β in colon tissue and serum of colitic rats but dose dependently increased IL-10 and SOD levels (p < 0.01). Histopathologic examination of colon showed that luteolin (low and high doses) and L-RSPMs (low and high doses) improved colonic inflammation in colitic rats to varying degrees compared to M group. CONCLUSION L-RSPMs could improve TNBS-induced colon inflammation by enhancing bioavailability, promoting antioxidant effects and regulating cytokine release, which may become a potential agent for UC treatment in clinical settings.
Collapse
Affiliation(s)
- Zhaomin Lu
- Department of Gastroenterology, The Second People's Hospital of Zhangjiagang, Zhangjiagang, China
| | - Juan Liu
- Department of Gastroenterology, The Second People's Hospital of Zhangjiagang, Zhangjiagang, China
| | - Liangjian Zhao
- Department of Gastroenterology, The Second People's Hospital of Zhangjiagang, Zhangjiagang, China
| | - Chenli Wang
- Department of Gastroenterology, The Second People's Hospital of Zhangjiagang, Zhangjiagang, China
| | - Feng Shi
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Zhengqi Li
- Department of Gastroenterology, The Second People's Hospital of Zhangjiagang, Zhangjiagang, China
| | - Xuesong Liu
- Department of Gastroenterology, The Second People's Hospital of Zhangjiagang, Zhangjiagang, China
| | - Zhiwei Miao
- Department of Gastroenterology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| |
Collapse
|
10
|
Shimul IM, Moshikur RM, Minamihata K, Moniruzzaman M, Kamiya N, Goto M. Choline oleate based micellar system as a new approach for Luteolin formulation: Antioxidant, antimicrobial, and food preservation properties evaluation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
11
|
Diedrich C, Camargo Zittlau I, Schineider Machado C, Taise Fin M, Maissar Khalil N, Badea I, Mara Mainardes R. Mucoadhesive nanoemulsion enhances brain bioavailability of luteolin after intranasal administration and induces apoptosis to sh-sy5y neuroblastoma cells. Int J Pharm 2022; 626:122142. [PMID: 36064075 DOI: 10.1016/j.ijpharm.2022.122142] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/02/2022] [Accepted: 08/22/2022] [Indexed: 11/28/2022]
Abstract
Neuroblastoma is the most frequently diagnosed extracranial solid tumor in children and accounts for 7% of all childhood malignancies and 15% cancer mortality in children. Luteolin (LUT) is recognized by its anticancer activity against several types of cancer. The aim of this study was to prepare chitosan-coated nanoemulsion containing luteolin (NECh-LUT), investigate its potential for brain delivery following intranasal administration, and to evaluate its cytotoxicity against neuroblastoma cells. NECh-LUT was developed by cavitation process and characterized for its size, surface charge, encapsulation efficiency, and mucoadhesion. The developed formulation presented size 68±1 nm, zeta potential +13±1 mV, and encapsulation efficiency of 85.5±0.3%. The NECh-LUT presented nearly 6-fold higher permeation through the nasal mucosa ex vivo and prolonged LUT release up to 72 h in vitro, following Baker-Lonsdale kinetic model. The pharmacokinetic evaluation of NECh-LUT revealed a 10-fold increase in drug half-life and a 4.4 times enhancement in LUT biodistribution in brain tissue after intranasal administration of single-dose. In addition, NECh-LUT inhibited the growth of neuroblastoma cells after 24, 48 and 72 h in concentrations starting from 2 µM. The NECh-LUT developed for intranasal administration proved to be a promising alternative for brain delivery of LUT, and a viable option for the treatment of neuroblastoma.
Collapse
Affiliation(s)
- Camila Diedrich
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838 - CEP 85040-167, Guarapuava, PR, Brazil
| | - Isabella Camargo Zittlau
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838 - CEP 85040-167, Guarapuava, PR, Brazil
| | - Christiane Schineider Machado
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838 - CEP 85040-167, Guarapuava, PR, Brazil
| | - Margani Taise Fin
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838 - CEP 85040-167, Guarapuava, PR, Brazil
| | - Najeh Maissar Khalil
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838 - CEP 85040-167, Guarapuava, PR, Brazil
| | - Ildiko Badea
- Drug Design and Discovery Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| | - Rubiana Mara Mainardes
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838 - CEP 85040-167, Guarapuava, PR, Brazil.
| |
Collapse
|
12
|
Improving water dispersibility and bioavailability of luteolin using microemulsion system. Sci Rep 2022; 12:11949. [PMID: 35831358 PMCID: PMC9279404 DOI: 10.1038/s41598-022-16220-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/06/2022] [Indexed: 11/09/2022] Open
Abstract
We have studied the physiological effects and health functions of luteolin, especially focusing on its absorption and metabolism. Recent studies have reported the advantages of microemulsion to improve the bioavailability of poorly water-soluble compounds, including luteolin. In the present study, we aimed to evaluate the absorption and metabolic profile of luteolin delivered in microemulsion system via oral intake. First, we prepared water-dispersed luteolin (WD-L) using a microemulsion-based delivery system and confirmed that WD-L has superior water dispersibility compared to free luteolin (CO-L) based on their particle size distributions. Following administration of WD-L and CO-L to rats, we detected high level of luteolin-3'-O-β-glucuronide and lower levels of luteolin, luteolin-4'-O-β-glucuronide, and luteolin-7-O-β-glucuronide in plasma from both CO-L and WD-L groups, indicating that the metabolic profile of luteolin was similar for both groups. On top of that, we found a 2.2-fold increase in the plasma area under the curve (AUC) of luteolin-3'-O-β-glucuronide (main luteolin metabolite) in WD-L group (vs. CO-L). Altogether, our results suggested that delivering luteolin by microemulsion system improve its oral bioavailability without affecting its metabolite profile. This evidence thereby provides a solid basis for future application of microemulsion system for optimal delivery of luteolin.
Collapse
|
13
|
Shimul IM, Moshikur RM, Minamihata K, Moniruzzaman M, Kamiya N, Goto M. Amino Acid Ester based Phenolic Ionic Liquids as a Potential Solvent for the Bioactive Compound Luteolin: Synthesis, Characterization, and Food Preservation Activity. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Santos AED, Dal Magro C, de Britto LS, Aguiar GPS, de Oliveira JV, Lanza M. Micronization of luteolin using supercritical carbon dioxide: Characterization of particles and biological activity in vitro. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2021.105471] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
15
|
Zhang Y, Yang Y, Liang H, Zeng P, Fu W, Yu J, Chen L, Chai D, Wen Y, Chen A. Synthesis, characterization, and anti-hepatocellular carcinoma effect of glycyrrhizin-coupled bovine serum albumin-loaded luteolin nanoparticles. Pharmacogn Mag 2022. [DOI: 10.4103/pm.pm_34_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
16
|
Liu J, Zhu Z, Yang Y, Adu-Frimpong M, Chen L, Ji H, Toreniyazov E, Wang Q, Yu J, Xu X. Preparation, characterization, pharmacokinetics, and antirenal injury activity studies of Licochalcone A-loaded liposomes. J Food Biochem 2021; 46:e14007. [PMID: 34811762 DOI: 10.1111/jfbc.14007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/13/2021] [Accepted: 11/09/2021] [Indexed: 12/20/2022]
Abstract
A liposome of Licochalcone A (LCA-Liposomes) was purposively prepared to ameliorate the low in vivo availability and efficacy of LCA. Physical characterization of LCA-Liposomes was carried out mainly by determining particle size, morphology, zeta potential (Z-potential), and efficiency of LCA encapsulation (EE) via appropriate techniques. Also, the rate of LCA release in vitro and distribution in vivo (plasma and tissues) was evaluated. Evaluation of the antirenal activity of LCA-liposomes was carried out by establishing chronic renal failure (CRF) model in mice through intragastric administration of adenine (200 mg/kg) and subsequent determination of biochemical parameters and examination of tissue sections. Respectively, the mean size of liposomal particles, Z-potential and EE of LCA-Liposomes were 71.78 ± 0.99 nm, -38.49 ± 0.06 mV, and 97.67 ± 1.72%. Pharmacokinetic and tissue distribution studies showed that LCA-Liposomes could improve the availability of LCA in the blood and tissues, whereas during pharmacodynamics studies, the liposome effectively improved the therapeutic effect of LCA on CRF mice by potentially protecting the renal tissues while exhibiting antioxidant activity. In conclusion, LCA-Liposomes could effectively improve the bioavailability of LCA and provide platform for the development of LCA-related functional products. PRACTICAL APPLICATIONS: As a traditional Chinese medicine, licorice is widely used in food and pharmaceutical industries. LCA is a small molecule flavonoid extracted from the root of licorice. In this study, LCA was loaded on liposome carriers, which significantly improved the water solubility and oral bioavailability, and proved that LCA-Liposomes have certain therapeutic effects on chronic renal failure, thereby providing a basis for the development of LCA into drugs or functional food in the future.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Zhongan Zhu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Yuhang Yang
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Michael Adu-Frimpong
- Department of Applied Chemistry and Biochemistry, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, Ghana
| | - Lin Chen
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Hao Ji
- Jiangsu Tian Sheng Pharmaceutical Co., Ltd., Zhenjiang, People's Republic of China
| | - Elmurat Toreniyazov
- Ashkent State Agricultural University (Nukus branch), Nukus, The Republic of Uzbekistan
| | - Qilong Wang
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| |
Collapse
|
17
|
Kazmi I, Al-Abbasi FA, Nadeem MS, Altayb HN, Alshehri S, Imam SS. Formulation, Optimization and Evaluation of Luteolin-Loaded Topical Nanoparticulate Delivery System for the Skin Cancer. Pharmaceutics 2021; 13:1749. [PMID: 34834164 PMCID: PMC8623391 DOI: 10.3390/pharmaceutics13111749] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 01/13/2023] Open
Abstract
In the present study, luteolin (LT)-loaded nanosized vesicles (LT-NVs) were prepared by a solvent evaporation-hydration method using phospholipid and edge activator. The formulation was optimized using three factors at a three-level Box-Behnken design. The formulated LT-NVs were prepared using the three independent variables phospholipid (A), edge activator (B) and sonication time (C). The effect of used variables was assessed on the vesicle size (Y1) and encapsulation efficiency (Y2). The selection of optimum composition (LT-NVopt) was based on the point prediction method of the software. The prepared LT-NVopt showed the particle size of 189.92 ± 3.25 nm with an encapsulation efficiency of 92.43 ± 4.12% with PDI and zeta potential value of 0.32 and -21 mV, respectively. The formulation LT-NVopt was further converted into Carbopol 934 gel (1% w/v) to enhance skin retention. LT-NVoptG was further characterized for viscosity, spreadability, drug content, drug release, drug permeation and antioxidant, antimicrobial and cytotoxicity assessment. The evaluation result revealed optimum pH, viscosity, spreadability and good drug content. There was enhanced LT release (60.81 ± 2.87%), as well as LT permeation (128.21 ± 3.56 µg/cm2/h), which was found in comparison to the pure LT. The antioxidant and antimicrobial study results revealed significantly (p ˂ 0.05) better antioxidant potential and antimicrobial activity against the tested organisms. Finally, the samples were evaluated for cytotoxicity assessment using skin cancer cell line and results revealed a significant difference in the viability % at the tested concentration. LT-NVoptG showed a significantly lower IC50 value than the pure LT. From the study, it can be concluded that the prepared LT-NVoptG was found to be an alternative to the synthetic drug as well as conventional delivery systems.
Collapse
Affiliation(s)
- Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 23443, Saudi Arabia; (F.A.A.-A.); (M.S.N.); (H.N.A.)
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 23443, Saudi Arabia; (F.A.A.-A.); (M.S.N.); (H.N.A.)
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 23443, Saudi Arabia; (F.A.A.-A.); (M.S.N.); (H.N.A.)
| | - Hisham N. Altayb
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 23443, Saudi Arabia; (F.A.A.-A.); (M.S.N.); (H.N.A.)
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
18
|
de Oliveira WQ, Neri-Numa IA, Arruda HS, Lopes AT, Pelissari FM, Barros FFC, Pastore GM. Special emphasis on the therapeutic potential of microparticles with antidiabetic effect: Trends and possible applications. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Wang L, Lu S, Deng Y, Wu W, Wang L, Liu Y, Zu Y, Zhao X. Pickering emulsions stabilized by luteolin micro-nano particles to improve the oxidative stability of pine nut oil. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:1314-1322. [PMID: 33245580 DOI: 10.1002/jsfa.10739] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 08/09/2020] [Accepted: 08/15/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Pine oil contains a high percentage of polyunsaturated fatty acids, which make it prone to oxidation. Luteolin (LUT) micro-nano particles with antioxidant properties can be used as stabilizers to form an edible oil-in-water Pickering emulsion to improve the oxidative stability of pine nut oil. RESULTS Under optimal preparation conditions, the LUT micro-nano particles and pine nut oil account for about 0.44 and 90.9 g·kg-1 of the total mass of the emulsion, respectively. The LUT particles in the suspension have a mean particle size of about 479 nm, present a sheet-like structure with a cut surface of 30-50 nm, and can reduce the surface tension of deionized water. In the optimized Pickering emulsion, the emulsion droplets are approximately spherical and have a mean diameter of about 125.6 nm and uniform distribution. The optimized Pickering emulsion droplets can remain stable for up to 2 h in an environment where the pH levels are 7-8.5, ultraviolet B radiation (UVB) irradiation, of less than 5.0 g·kg-1 , and at a temperature of 80 °C. The stability of the emulsion in simulated digestive fluid changed minimally. In the first 7 days of the accelerated oxidation experiment, LUT micro-nano particles not only successfully protected the integrity of emulsion droplets but also fully inhibited the peroxidation of pine oil. CONCLUSION The strong antioxidant properties of LUT micro-nano particles, and the dense protective layer they formed, stabilized the Pickering emulsion successfully. The particles also improved the oxidation stability of pine nut oil. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lu Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Shengmin Lu
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yiping Deng
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
| | - Weiwei Wu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
| | - Li Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
| | - Yanjie Liu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
| | - Yuangang Zu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
| | - Xiuhua Zhao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
| |
Collapse
|
20
|
Myint KZ, Yu Q, Xia Y, Qing J, Zhu S, Fang Y, Shen J. Bioavailability and antioxidant activity of nanotechnology-based botanic antioxidants. J Food Sci 2021; 86:284-292. [PMID: 33438274 DOI: 10.1111/1750-3841.15582] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/10/2020] [Accepted: 12/19/2020] [Indexed: 12/17/2022]
Abstract
Botanic bioactive substances have issues with their solubility, stability, and oral bioavailability in the application, which could be improved by nanotechnologies. In another hands, green synthesis of nanoparticles (NPs) with plant extract is also a promising technology for preparation of NPs due to its safety advantage, yet the bioactive botanic substances that could be more than the assistant of the green synthesis of NPs. Based on the above concerns, this review summarized the preparation of botanic NPs with various plant extract, their solubility, stability, and oral bioavailability; specific attention has been paid to the botanic Ag/Au NPs, their capacity of antioxidant, bioavailability, antimicrobial, anti-inflammatory, and anticancer.
Collapse
Affiliation(s)
- Khaing Zar Myint
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China.,Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Materials Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| | - Qiannan Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China.,Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Materials Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| | - Yongmei Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China.,Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Materials Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| | - Jiu Qing
- Nantong Acetic Acid Chemical Co. Ltd., 968 Jiangshan Road Nantong Economic and Technological Development Zone, Nantong, Jiangsu, 226017, China
| | - Song Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| | - Yun Fang
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Materials Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| | - Jie Shen
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Materials Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
21
|
Zhang N, Zhang F, Xu S, Yun K, Wu W, Pan W. Formulation and evaluation of luteolin supersaturatable self-nanoemulsifying drug delivery system (S-SNEDDS) for enhanced oral bioavailability. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101783] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|