1
|
Li JM, Wang WJ, Chen H, Lin SY, Mao XY, Yu JM, Chen LL. Characterization, in vitro antioxidant activity and stability of cattle bone collagen peptides‑selenium chelate. Food Chem X 2024; 23:101789. [PMID: 39679381 PMCID: PMC11639323 DOI: 10.1016/j.fochx.2024.101789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 12/17/2024] Open
Abstract
In this study, cattle bone collagen peptides-selenium chelate (CCP-Se) was prepared and its structure, oxidation resistance and stability were characterized. The selenium binding capacity was 33.65 ± 0.13 mg/g by optimized preparation conditions. Structural analysis showed that selenium ions bound mainly to the amino nitrogen, carboxyl oxygen and hydroxyl oxygen atoms of the cattle bone collagen peptide (CCP). The microstructure and particle size analyses showed that the particle size of CCP-Se was increased and formed a regular and compact crystal structure compared with CCP. Additionally, CCP-Se exhibited excellent antioxidant activity. Stability analysis showed that CCP-Se was stable in thermal processing, simulated in vitro digestion and acid/alkali tolerance tests. The intestinal selenium permeability of CCP-Se was significantly better than sodium selenite (p < 0.05). This study provides reference for the high-value application of cattle bone and suggests the potential of CCP-Se as a new effective selenium supplement.
Collapse
Affiliation(s)
- Jian-Ming Li
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wen-Jun Wang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Hui Chen
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Su-Yun Lin
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xin-Yi Mao
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jun-Min Yu
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ling-Li Chen
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
2
|
Karimi-Dehkordi M, Molavi Pordanjani M, Gholami-Ahangaran M, Mousavi Khaneghah A. The detoxification of cadmium in Japanese quail by pomegranate peel powder. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:1204-1214. [PMID: 37194662 DOI: 10.1080/09603123.2023.2211547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/04/2023] [Indexed: 05/18/2023]
Abstract
Environmental pollution and exposure to toxic metals such as cadmium (Cd) can cause severe and chronic diseases and have significant side effects on vital organs. The present study aimed to evaluate the effect of pomegranate peel on biochemical factors and lipid peroxidation in intoxication by Cd in Japanese quail. Two hundred seventy quails in different groups were fed diets containing Cd and pomegranate peel from 6 to 35 days old. Then, serum biochemical parameters were assessed, including liver enzymes, urea, and thiobarbituric acid. In the quails, Cd significantly increased MDA, urea, and AST (P < 0.05). Adding pomegranate peel at 1.5 and 2% levels decreased these parameters significantly (P < 0.05). In conclusion, dietary enrichment using pomegranate peel reduced the adverse effects of Cd by improving lipid peroxidation, aspartate aminotransferase (AST), and urea in Japanese quail.
Collapse
Affiliation(s)
- Maryam Karimi-Dehkordi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | | | - Majid Gholami-Ahangaran
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
- Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan
| |
Collapse
|
3
|
Liu W, Ren J, Qin X, Zhang X, Wu H, Han LJ. Structural identification and combination mechanism of iron (II)-chelating Atlantic salmon ( Salmo salar L.) skin active peptides. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:340-352. [PMID: 38196720 PMCID: PMC10772038 DOI: 10.1007/s13197-023-05845-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/21/2023] [Accepted: 09/11/2023] [Indexed: 01/11/2024]
Abstract
In order to utilize salmon skin for high value, and investigate the structural identification and combination mechanism of iron (II)-chelating peptides systemically, Atlantic salmon (Salmo salar L.) skin, a by-product of Atlantic salmon processing, was treated by two-step enzymatic hydrolysis to obtain salmon skin active peptides (SSAP). Then they reacted with iron (II) to obtain iron (II)-chelating salmon skin active peptides (SSAP-Fe) with a high iron (II) chelating ability of 98.84%. The results of Fourier transform infrared spectroscopy (FTIR), circular dichroism (CD) spectroscopy, 8-anilino-1-naphthalenesulfonic acid ammonium salt hydrate (ANS) combined fluorescence measurement, isothermal titration calorimetry (ITC) and full wavelength ultraviolet (UV) scanning showed that the structural characteristics of SSAP changed before and after chelating iron (II). Reverse phase high performance liquid chromatography (RP-HPLC) and mass spectrometry were used to identify and quantify the peptides in SSAP-Fe. Four peptide sequences (STEGGG, GIIKYGDDFMH, PGQPGIGYDGPAGPPGPPGPPGAP and QNQRESWTTCRSQSSLPDG) were identified. The content of PGQPGIGYDGPAGPPGPPGPPGAP was the highest, at 25.17 μg/mg. The pharmacokinetic and pharmacodynamic properties of these four peptides were also investigated, and the results indicated that they have satisfactory predicted ADMET properties. Molecular docking technology was used to analyze the binding sites between iron (II) and SSAP, and it was found that PGQPGIGYDGPAGPPGPPGPPGAP had the lowest predicted binding energy with iron (II) and the most stable predicted binding energy with iron (II). This results showed that the stability of SSAP-Fe were closely related to the number of covalent bonds and the types of amino acids. This study revealed the structure and combination mechanism of SSAP-Fe, and indicated that SSAP-Fe prepared by chelation may be used as a Fe supplement that can be applied in functional foods or ingredients.
Collapse
Affiliation(s)
- Wen–Ying Liu
- Engineering Laboratory for Agro Biomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing, 100083 People’s Republic of China
| | - Jie Ren
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, 100015 People’s Republic of China
| | - Xiu–Yuan Qin
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, 100015 People’s Republic of China
| | - Xin–Xue Zhang
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, 100015 People’s Republic of China
| | - Han–Shuo Wu
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, 100015 People’s Republic of China
| | - Lu-Jia Han
- Engineering Laboratory for Agro Biomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing, 100083 People’s Republic of China
| |
Collapse
|
4
|
Cheng K, Sun Y, Liu B, Ming J, Wang L, Xu C, Xiao Y, Zhang C, Shang L. Selenium Modification of Natural Products and Its Research Progress. Foods 2023; 12:3773. [PMID: 37893666 PMCID: PMC10606687 DOI: 10.3390/foods12203773] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/25/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
The selenization of natural products refers to the chemical modification method of artificially introducing selenium atoms into natural products to interact with the functional groups in the target molecule to form selenides. Nowadays, even though scientists in fields involving organic selenium compounds have achieved numerous results due to their continuous investment, few comprehensive and systematic summaries relating to their research results can be found. The present paper summarizes the selenization modification methods of several kinds of important natural products, such as polysaccharides, proteins/polypeptides, polyphenols, lipids, and cyclic compounds, as well as the basic principles or mechanisms of the selenizing methods. On this basis, this paper explored the future development trend of the research field relating to selenized natural products, and it is hoped to provide some suggestions for directional selenization modification and the application of natural active ingredients.
Collapse
Affiliation(s)
- Kaixuan Cheng
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China; (K.C.); (Y.S.); (B.L.); (L.W.); (C.X.); (Y.X.); (C.Z.)
| | - Yang Sun
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China; (K.C.); (Y.S.); (B.L.); (L.W.); (C.X.); (Y.X.); (C.Z.)
| | - Bowen Liu
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China; (K.C.); (Y.S.); (B.L.); (L.W.); (C.X.); (Y.X.); (C.Z.)
| | - Jiajia Ming
- Enshi Tujia and Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi 445000, China;
| | - Lulu Wang
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China; (K.C.); (Y.S.); (B.L.); (L.W.); (C.X.); (Y.X.); (C.Z.)
| | - Chenfeng Xu
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China; (K.C.); (Y.S.); (B.L.); (L.W.); (C.X.); (Y.X.); (C.Z.)
| | - Yuanyuan Xiao
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China; (K.C.); (Y.S.); (B.L.); (L.W.); (C.X.); (Y.X.); (C.Z.)
| | - Chi Zhang
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China; (K.C.); (Y.S.); (B.L.); (L.W.); (C.X.); (Y.X.); (C.Z.)
| | - Longchen Shang
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China; (K.C.); (Y.S.); (B.L.); (L.W.); (C.X.); (Y.X.); (C.Z.)
- Enshi Tujia and Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi 445000, China;
| |
Collapse
|
5
|
Wu S, Zhu Z, Chen M, Huang A, Xie Y, Hu H, Zhang J, Wu Q, Wang J, Ding Y. Comparison of Neuroprotection and Regulating Properties on Gut Microbiota between Selenopeptide Val-Pro-Arg-Lys-Leu-SeMet and Its Native Peptide Val-Pro-Arg-Lys-Leu-Met In Vitro and In Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12203-12215. [PMID: 37530172 DOI: 10.1021/acs.jafc.3c02918] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Selenopeptides are promising candidates for intervening in neuroinflammation; however, the key role of selenium (Se) in selenopeptides remains poorly understood. To address this gap, we compared the neuroprotective effects of selenopeptide Val-Pro-Arg-Lys-Leu-SeMet (namely, Se-P1) and its native peptide Val-Pro-Arg-Lys-Leu-Met (namely, P1). Our results demonstrate that Se-P1 treatment exhibits superior antioxidant and antineuroinflammatory effects in PC12 cells and lipopolysaccharide (LPS)-injured mice compared to P1. Moreover, the administration of Se-P1 and P1 resulted in a shift in the gut microbiota composition. Notably, during LPS-induced injury, Se-P1 treatment demonstrated greater stability in maintaining gut microbiota composition compared to P1 treatment. Specifically, Se-P1 may have a positive impact on gut microbiota dysbiosis by modulating inflammatory-related bacteria such as enhancing Lactobacillus abundance while reducing that of Lachnospiraceae_NK4A136_group. Furthermore, the alteration of metabolites induced by Se-P1 treatment exhibited a significant correlation with gut microbiota, subsequently modulating the inflammatory-related metabolic pathways including histidine metabolism, lysine degradation, and purine metabolism. These findings suggest that organic Se contributes to the bioactivities of Se-P1 in mitigating neuroinflammation in LPS-injured mice compared to P1. These findings hold significant value for the development of potential preventive or therapeutic strategies against neurodegenerative diseases and introduce novel concepts in selenopeptide nutrition and supplementation recommendations.
Collapse
Affiliation(s)
- Shujian Wu
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zhenjun Zhu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Mengfei Chen
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Aohuan Huang
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yizhen Xie
- Guangdong Yuewei Edible Mushroom Technology Co., Ltd., Guangzhou 510530, China
| | - Huiping Hu
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Jumei Zhang
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qingping Wu
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou 510070, China
| | - Yu Ding
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
6
|
Ma Y, Xu J, Guo R, Teng G, Chen Y, Xu X. In vitro gastrointestinal model for the elderly: Effect of high hydrostatic pressure on protein structures and antioxidant activities of whey protein isolate. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
7
|
Wang J, Kadyan S, Ukhanov V, Cheng J, Nagpal R, Cui L. Recent advances in the health benefits of pea protein (Pisum sativum): bioactive peptides and the interaction with the gut microbiome. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100944] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Xiong Y, Chen ZH, Zhang FL, Yu ZY, Liu B, Zhang C, Zhao LN. A specific selenium-chelating peptide isolated from the protein hydrolysate of Grifola frondosa. RSC Adv 2021; 11:10272-10284. [PMID: 35423524 PMCID: PMC8695590 DOI: 10.1039/d0ra10886c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/26/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Grifola frondosa is a type of edible medicinal mushroom with abundant proteins. Selenium (Se) is an essential micronutrient for human. Many animal experiments and clinical studies had indicated that Se plays an important role in diverse physiologic actions. Most inorganic selenium compounds are toxic, and the lowest lethal dose is relatively small. Peptide-Se chelate can probably be dietary supplements in functional foods for humans with Se deficiency. Methods: In this study, a specific tripeptide Arg-Leu-Ala (RLA) with strong Se-chelating capacity was purified from Grifola frondosa through ultrafiltration, reversed-phase HPLC and gel filtration chromatography. The UV, SEM, XRD, 1H NMR spectra are shown to provide more information about characterization of RLA-Se chelates. The bioavailability of RLA-Se chelate in Caco-2 cell line was investigated by using human colon cancer Caco-2 cells as model. iTRAQ comparative proteomics approach were used to identify the differentially expressed proteins. Results: The Se binding capacity of RLA was 84.47 ± 1.21 mg g-1. The results of UV, X-ray diffraction (XRD), 1H NMR and SEM structure analysis showed that the binding of selenium in the hydrolysate of Grifola frondosa protein was successful, and the amino and carboxyl groups of RLA were involved in the coordination of Se, which was the main site of chelation. The results of absorption of RLA-Se chelate in Caco-2 cells showed that RLA-Se chelate could be used as selenium supplement source. Using iTRAQ comparative proteomics approach, 40 proteins found significant. RLA-Se treatment had been demonstrated to present a higher accumulation of Se compared with control treatment and show an effective absorption by Caco-2 with the result that E3 protein performed up regulation. RLA-Se may play roles in cell cycle and apoptosis as an essential micronutrient. To sum up, our research results show that Grifola polypeptide-Se chelate is a promising multifunctional organic selenium product, which can be used as a new functional supplement for selenium deficiency.
Collapse
Affiliation(s)
- Yu Xiong
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University No. 15, Shangxiadian rd, Cangshan District Fuzhou Fujian 350002 China
| | - Zi-Hong Chen
- College of Food Science, Fujian Agriculture and Forestry University Fuzhou Fujian 350002 China
| | - Feng-Li Zhang
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University No. 15, Shangxiadian rd, Cangshan District Fuzhou Fujian 350002 China
| | - Zhi-Ying Yu
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University No. 15, Shangxiadian rd, Cangshan District Fuzhou Fujian 350002 China
| | - Bin Liu
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University No. 15, Shangxiadian rd, Cangshan District Fuzhou Fujian 350002 China
- College of Food Science, Fujian Agriculture and Forestry University Fuzhou Fujian 350002 China
| | - Chong Zhang
- Institute of Emergency Medicine, Department of Emergency, Fujian Provincial Hospital Fuzhou Fujian 350001 China
| | - Li-Na Zhao
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University No. 15, Shangxiadian rd, Cangshan District Fuzhou Fujian 350002 China
| |
Collapse
|
9
|
Liu WY, Zhang JT, Miyakawa T, Li GM, Gu RZ, Tanokura M. Antioxidant properties and inhibition of angiotensin-converting enzyme by highly active peptides from wheat gluten. Sci Rep 2021; 11:5206. [PMID: 33664447 PMCID: PMC7933229 DOI: 10.1038/s41598-021-84820-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/22/2021] [Indexed: 01/19/2023] Open
Abstract
This study aimed to focus on the high-value utilization of raw wheat gluten by determining the potent antioxidant peptides and angiotensin I-converting enzyme (ACE) inhibitory peptides from wheat gluten oligopeptides (WOP). WOP were analyzed for in vitro antioxidant activity and inhibition of ACE, and the identification of active peptides was performed by reversed-phase high-performance liquid chromatography and mass spectrometry. Quantitative analysis was performed for highly active peptides. Five potent antioxidant peptides, Leu-Tyr, Pro-Tyr, Tyr-Gln, Ala-Pro-Ser-Tyr and Arg-Gly-Gly-Tyr (6.07 ± 0.38, 7.28 ± 0.29, 11.18 ± 1.02, 5.93 ± 0.20 and 9.04 ± 0.47 mmol 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox) equivalent/g sample, respectively), and five potent ACE inhibitory peptides, Leu-Tyr, Leu-Val-Ser, Tyr-Gln, Ala-Pro-Ser-Tyr and Arg-Gly-Gly-Tyr (half maximal inhibitory concentration (IC50) values = 0.31 ± 0.02, 0.60 ± 0.03, 2.00 ± 0.13, 1.47 ± 0.08 and 1.48 ± 0.11 mmol/L, respectively), were observed. The contents of Leu-Tyr, Pro-Tyr, Tyr-Gln, Ala-Pro-Ser-Tyr, Arg-Gly-Gly-Tyr, and Leu-Val-Ser were 155.04 ± 8.36, 2.08 ± 0.12, 1.95 ± 0.06, 22.70 ± 1.35, 0.25 ± 0.01, and 53.01 ± 2.73 μg/g, respectively, in the WOP. Pro-Tyr, Tyr-Gln, Ala-Pro-Ser-Tyr, Arg-Gly-Gly-Tyr, and Leu-Val-Ser are novel antioxidative/ACE inhibitory peptides that have not been previously reported. The results suggest that WOP could potentially be applied in the food industry as a functional additive.
Collapse
Affiliation(s)
- Wen-Ying Liu
- College of Engineering, China Agricultural University, Beijing, 100083, People's Republic of China.
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, 100015, People's Republic of China.
| | - Jiang-Tao Zhang
- College of Life Science and Technology, HuaZhong University of Science and Technology, Wuhan, People's Republic of China
| | - Takuya Miyakawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Guo-Ming Li
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, 100015, People's Republic of China
| | - Rui-Zeng Gu
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, 100015, People's Republic of China
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
10
|
Zhang X, He H, Xiang J, Yin H, Hou T. Selenium-Containing Proteins/Peptides from Plants: A Review on the Structures and Functions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:15061-15073. [PMID: 33315396 DOI: 10.1021/acs.jafc.0c05594] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Selenium is an essential microelement required for biological processes. Traditional selenium supplements (selenite and selenomethionine mainly) remain concerns due to toxicity and bioavailability. In recent decades, biofortification strategies have been applied to produce selenium-enriched edible plants to address the challenges of superior nutritional quality requirements. Plant-derived selenium-containing proteins/peptides offer potential health benefits beyond the basic nutritional requirements of Se. Highly nucleophilic seleno-amino acids, special peptide sequences, and favorable bioavailability contribute to the biological activities of selenium-containing proteins/peptides, such as antioxidant, antihypertensive, anti-inflammatory, and immunomodulatory effects. However, their applications on a commercial scale are insufficient owing to the complexity of purification and identification techniques and the sparse information on bioavailability and metabolism. In this review, selenium status, structural features, bioactivities, structure-activity relationships, and bioavailability, as well as the mechanisms underlying the bioactivities and metabolism of plant-derived selenium-containing proteins/peptides, are summarized and discussed for their nutraceutical use.
Collapse
Affiliation(s)
- Xing Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui He
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiqian Xiang
- Enshi Tujia & Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi 445000, China
| | - Hongqing Yin
- Enshi Tujia & Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi 445000, China
| | - Tao Hou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
11
|
Habinshuti I, Mu TH, Zhang M. Ultrasound microwave-assisted enzymatic production and characterisation of antioxidant peptides from sweet potato protein. ULTRASONICS SONOCHEMISTRY 2020; 69:105262. [PMID: 32707458 DOI: 10.1016/j.ultsonch.2020.105262] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 05/06/2023]
Abstract
Herein, we investigated the effects of ultrasound microwave (UM)-assisted hydrolysis using Alcalase (ALC), Flavourzyme (FLA), and their combination (ALC + FLA), on the production of sweet potato protein hydrolysates (SPPH). UM-assisted enzymatic hydrolysis significantly increased the degree of hydrolysis of SPPH compared with untreated (UN) samples. Fractions with differences in molecular weight (MW) of >10, 3-10, and < 3 kDa in SPPH from UM-assisted ALC, FLA, and ALC + FLA hydrolysis displayed higher antioxidant activities than those from UN samples. MW < 3 kDa fractions of SPPH from UM-assisted ALC and ALC + FLA hydrolysis treatments presented much stronger Fe2+-chelating activity (98.48% and 98.59%), ·OH scavenging activity (67.11% and 60.06%), and higher ORAC values (110.32 and 106.32 µg TE/mL), from which diverse peptides with potential antioxidant activities were obtained by semi-preparative HPLC and LC-MS/MS. All identified peptide sequences exhibited at least three potential antioxidant amino acids. Additionally, changes in peptide conformational structure and antioxidant amino acid composition were revealed by structure-activity relationship analysis. Thus, ultrasound microwave treatment has great potential in antioxidant peptides production.
Collapse
Affiliation(s)
- Ildephonse Habinshuti
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, Beijing 100193, China
| | - Tai-Hua Mu
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, Beijing 100193, China.
| | - Miao Zhang
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, Beijing 100193, China.
| |
Collapse
|
12
|
Liu Y, Li D, Wei Y, Ma Y, Wang Y, Huang L, Wang Y. Hydrolyzed peptides from purple perilla (Perilla frutescens L. Britt.) seeds improve muscle synthesis and exercise performance in mice. J Food Biochem 2020; 44:e13461. [PMID: 32984958 DOI: 10.1111/jfbc.13461] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 01/04/2023]
Abstract
The purple perilla (Perilla frutescens L. Britt.) seed peptides (PPSP) were obtained and their improvement of muscle synthesis and exercise performance was investigated in this work. Results showed that the weight-average molecular weight of the PPSP was 869 Dalton. The PPSP were rich in branched-chain amino acids (18.82 g/100 g) and anti-fatigue amino acids, including glutamate (Glu), aspartic acid (Asp), and arginine (Arg). After the administration of PPSP at 1.2 g kg-1 day-1 for 4 weeks, the muscle coefficient and muscle fiber thickness in mice displayed a distinct (p < .05) increase via the upregulation of myogenic differentiation (MyoD) and myogenin (MyoG). The improved muscle strength and exercise tolerance were also observed. Simultaneously, the levels of the biochemical blood markers associated with fatigue and the glycogen degradation in liver and muscle were significantly (p < .05) suppressed. These results suggested that PPSP could effectively promote muscle synthesis and ameliorate exercise fatigue. PRACTICAL APPLICATIONS: Purple perilla is an annual herbal plant and widely grown in Asian countries as an important crop and food. It is believed that the protein content of purple perilla seeds can reach 23.7%, and the protein is rich in essential amino acids. However, the information about the beneficial effects of their proteins or peptides on muscle synthesis and anti-exercise fatigue were still limited. The present results discovered that the PPSP can effectively promote the growth of muscle tissue and improve exercise tolerance. It is indicated that PPSP may have a potential application value in partly or completely replacing animal proteins such as whey protein.
Collapse
Affiliation(s)
- Yixiang Liu
- College of Food and Biological Engineering, Jimei University, Xiamen, People's Republic of China
| | - Donghui Li
- College of Food and Biological Engineering, Jimei University, Xiamen, People's Republic of China
| | - Ying Wei
- The Department of Food Engineering, China National Research Institute of Food & Fermentation Industries Corporation Limited, Beijing, People's Republic of China
| | - Yu Ma
- College of Food and Biological Engineering, Jimei University, Xiamen, People's Republic of China
| | - Yuchen Wang
- The Department of Food Engineering, China National Research Institute of Food & Fermentation Industries Corporation Limited, Beijing, People's Republic of China
| | - Ling Huang
- College of Food and Biological Engineering, Jimei University, Xiamen, People's Republic of China
| | - Yanbo Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|