1
|
Liu Y, Xiong L, Wang L, Zhou J, Wang F, Luo F, Shen X. Targeting the gut-skin axis by food-derived active peptides ameliorates skin photoaging: a comprehensive review. Food Funct 2025; 16:366-388. [PMID: 39716899 DOI: 10.1039/d4fo04202f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Food-derived active peptides (FDAPs) are a class of peptides that exert antioxidant, anti-inflammatory, anti-aging and other effects. In recent years, active peptides from natural foods have been reported to improve skin photoaging, but their mechanisms have not been summarized to date. In this review, we focused on the preparation of FDAPs, their mechanisms of photoaging, and their function against photoaging through the gastrointestinal barrier. Furthermore, the latest progress on FDAPs in the prevention and treatment of skin photoaging via the gut-skin axis is summarized and discussed. FDAPs can be directly absorbed into the gastrointestinal tract and enter skin tissues to exert anti-photoaging effects; they can also regulate the gut microbiota, leading to changes in metabolites to ameliorate light-induced skin aging. Future work needs to focus on the delivery system and clinical validation of anti-photoaging peptides to provide solutions or suggestions for improving photoaging.
Collapse
Affiliation(s)
- Yang Liu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, Jiangsu, China.
| | - Ling Xiong
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, Jiangsu, China.
| | - Luanfeng Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, Jiangsu, China.
| | - Jianxin Zhou
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, Jiangsu, China.
| | - Fang Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, Jiangsu, China.
| | - Feijun Luo
- Hunan Provincial Key Laboratory of Deeply Processing and Quality Control of Cereals and Oils, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
| | - Xinchun Shen
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
2
|
Zhong W, He J, Huang W, Yin G, Liu G, Cao Y, Miao J. Effect of the phosphorylation structure in casein phosphopeptides on the proliferation, differentiation, and mineralization of osteoblasts and its mechanism. Food Funct 2023; 14:10107-10118. [PMID: 37874279 DOI: 10.1039/d3fo03125j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Our previous studies have shown that highly phosphorylated casein phosphopeptides (residues 1-25) P5 could efficiently bind calcium and promote intestinal calcium absorption, and enhanced bone development in rats. The purpose of this study was to investigate the effect of the phosphorylation structure in P5 on the proliferation, differentiation, and mineralization of osteoblasts (MC3T3-E1) and its mechanism. P5 was obtained by high-performance liquid chromatography (HPLC) and non-phosphorylated peptide P5-0 was obtained by chemical synthesis. Compared with the control group, the proliferation rate of MC3T3-E1 cells treated by P5 was 1.10 times that of P5-0 at 200 μg mL-1. P5 caused the cell cycle retention of MC3T3-E1 cells in the G2/M phase, while P5-0 had no significant difference in the G2/M phase. MC3T3-E1 cells incubated with P5 showed stronger alkaline phosphatase (ALP) activity than with P5-0, suggesting a tendency to promote cellular differentiation. Compared to the P5-0 treatment group, the P5 treatment group at concentrations of 10 μg mL-1 showed significant differences in the mineralization rates (p < 0.05). P5 significantly upregulated the expressions of Runx2, ALP, ColIα1, and OCN compared with the control group (p < 0.05). In addition, in silico molecular docking showed that the binding force of the P5-EGFR complex was stronger than that of the P5-0-EGFR complex, which was significantly related to the phosphorylation structure in P5 and might be an important reason for osteoblast proliferation. In conclusion, the phosphorylation structure and amino acid composition in P5 stimulated the osteogenic activity of MC3T3-E1 cells, and could be expected to be a functional food for the prevention of osteoporosis.
Collapse
Affiliation(s)
- Wanying Zhong
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Jian He
- BYHEALTH Institute of Nutrition & Health, No. 3 Kehui 3rd Street, No. 99 Kexue Avenue Central, Huangpu District, Guangzhou, Guangdong Province 510663, China
| | - Wen Huang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Guangling Yin
- BYHEALTH Institute of Nutrition & Health, No. 3 Kehui 3rd Street, No. 99 Kexue Avenue Central, Huangpu District, Guangzhou, Guangdong Province 510663, China
| | - Guo Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Jianyin Miao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
3
|
Li Y, Li P, Yu X, Zheng X, Gu Q. Exploitation of In Vivo-Emulated In Vitro System in Advanced Food Science. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37023249 DOI: 10.1021/acs.jafc.2c07289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Reasonable model construction contributes to the accuracy of experimental results. Multiple in vivo models offer reliable choices for effective evaluation, whereas their applications are hampered due to adverse features including high time-consumption, high cost and ethical contradictions. In vivo-emulated in vitro systems (IVE systems) have experienced rapid development and have been brought into food science for about two decades. IVE systems' flexibly gathers the strengths of in vitro and in vivo models into one, reflecting the results in an efficient, systematic and interacted manner. In this review, we comprehensively reviewed the current research progress of IVE systems based on the literature published in the recent two decades. By categorizing the IVE systems into 2D coculture models, spheroids and organoids, their applications were systematically summarized and typically exemplified. The pros and cons of IVE systems were also thoroughly discussed, drawing attention to present challenges and inspiring potential orientation and future perspectives. The wide applicability and multiple possibilities suggest IVE systems as an effective and persuasive platform in the future of advanced food science.
Collapse
Affiliation(s)
- Yonglu Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, 310018, Zhejiang, People's Republic of China
| | - Ping Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, 310018, Zhejiang, People's Republic of China
| | - Xin Yu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, People's Republic of China
- Zhejiang Key Laboratory for Agro-food Processing, Fuli Institute of Food Science, and National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, People's Republic of China
- Zhejiang Key Laboratory for Agro-food Processing, Fuli Institute of Food Science, and National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Qing Gu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, 310018, Zhejiang, People's Republic of China
| |
Collapse
|
4
|
Electrospun Scaffolds Based on Poly(butyl cyanoacrylate) for Tendon Tissue Engineering. Int J Mol Sci 2023; 24:ijms24043172. [PMID: 36834584 PMCID: PMC9960733 DOI: 10.3390/ijms24043172] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/09/2023] Open
Abstract
Tendon disorders are common medical conditions that could lead to significant disability, pain, healthcare costs, and a loss of productivity. Traditional approaches require long periods of treatment, and they largely fail due to the tissues weakening and the postoperative alterations of the normal joint mechanics. To overcome these limitations, innovative strategies for the treatment of these injuries need to be explored. The aim of the present work was the design of nano-fibrous scaffolds based on poly(butyl cyanoacrylate) (PBCA), a well-known biodegradable and biocompatible synthetic polymer, doped with copper oxide nanoparticles and caseinphosphopeptides (CPP), able to mimic the hierarchical structure of the tendon and to improve the tissue healing potential. These were developed as implants to be sutured to reconstruct the tendons and the ligaments during surgery. PBCA was synthetized, and then electrospun to produce aligned nanofibers. The obtained scaffolds were characterized for their structure and physico-chemical and mechanical properties, highlighting that CuO and CPP loading, and the aligned conformation determined an increase in the scaffold mechanical performance. Furthermore, the scaffolds loaded with CuO showed antioxidant and anti-inflammatory properties. Moreover, human tenocytes adhesion and proliferation to the scaffolds were assessed in vitro. Finally, the antibacterial activity of the scaffolds was evaluated using Escherichia coli and Staphylococcus aureus as representative of Gram-negative and Gram-positive bacteria, respectively, demonstrating that the CuO-doped scaffolds possessed a significant antimicrobial effect against E. coli. In conclusion, scaffolds based on PBCA and doped with CuO and CPP deserve particular attention as enhancers of the tendon tissue regeneration and able to avoid bacterial adhesion. Further investigation on the scaffold efficacy in vivo will assess their capability for enhancing the tendon ECM restoration in view of accelerating their translation to the clinic.
Collapse
|
5
|
Valchkov A, Loginovska K, Doneva M, Ninova-Nikolova N, Metodieva P. Comparative analysis of the degree of hydrolysis and antioxidant activity of milk and whey hydrolysates. BIO WEB OF CONFERENCES 2023. [DOI: 10.1051/bioconf/20235801002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
The degree of hydrolysis and antioxidant activity of protein hydrolysates from fresh cow’s milk and whey obtained by the action of the proteolytic enzymes papain, bromelain and chymosin were compared. The lowest degree of hydrolysis in fresh milk hydrolysates was reported for sample MP1 (10 min reaction time, treatment with 0.1 mg/ml papain), and the highest percentage was obtained at hydrolysate MB12 (at 60 min reaction time, treatment with 1.0 mg/ml bromelain). For the whey samples in sample WC1 (10 min reaction time, treatment with 1.0 μl/ml chymosin), the percentage of hydrolysis was the lowest. The highest percentage was achieved at WP12 hydrolysate using papain at a concentration of 1 mg/ml and a 60-min reaction time. The obtained values for the antioxidant capacity of the hydrolysed products show a higher activity compared to the starting substrates. The highest activity in the milk hydrolysates of 11.32 mg TE/100 ml was found in variant MB3, and in the whey hydrolysates of 7.83 mg TE/100 ml - in variant WP7. Hydrolysates treated with chymosin had lower TE values compared to the hydrolysate’s variants, treated with papain and bromelain.
Collapse
|
6
|
Advances in analytical techniques coupled to in vitro bioassays in the search for new peptides with functional activity in effect-directed analysis. Food Chem 2022; 397:133784. [DOI: 10.1016/j.foodchem.2022.133784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/17/2022] [Accepted: 07/23/2022] [Indexed: 11/20/2022]
|
7
|
Liu G, Guo B, Luo M, Sun S, Lin Q, Kan Q, He Z, Miao J, Du H, Xiao H, Cao Y. A comprehensive review on preparation, structure-activities relationship, and calcium bioavailability of casein phosphopeptides. Crit Rev Food Sci Nutr 2022; 64:996-1014. [PMID: 36052610 DOI: 10.1080/10408398.2022.2111546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Calcium is one of the important elements for human health. Calcium deficiencies can lead to numerous diseases. Calcium chelating peptides have shown potential application in the management of calcium deficiencies. Casein phosphopeptides (CPP) are phosphoseryl-containing fragments of casein by enzymatic hydrolysis or fermentation during manufacture of milk products as well as during intestinal digestion. An increasing number of CPP with the ability to facilitate and enhance the bioavailability of calcium are being discovered and identified. In this review, 249 reported CPP derived from four types of bovine casein (αs1, αs2, β and κ) were collected, and the amino acid sequence and phosphoserine group information were sorted out. This review outlines the current enzyme hydrolysis, detection methods, purification, structure-activity relationship and mechanism of intestinal calcium absorption in vitro and in vivo as well as application of CPP.
Collapse
Affiliation(s)
- Guo Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
- College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Baoyan Guo
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
- College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Minna Luo
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Shengwei Sun
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Qianru Lin
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Qixin Kan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Zeqi He
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jianyin Miao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
8
|
Identification, production and bioactivity of casein phosphopeptides – A review. Food Res Int 2022; 157:111360. [DOI: 10.1016/j.foodres.2022.111360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/28/2022] [Accepted: 05/10/2022] [Indexed: 01/23/2023]
|
9
|
Bielecka M, Cichosz G, Czeczot H. Antioxidant, antimicrobial and anticarcinogenic activities of bovine milk proteins and their hydrolysates - A review. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2021.105208] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Current perspectives in cell-based approaches towards the definition of the antioxidant activity in food. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.07.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|