1
|
Wang J, Li Z, Wu X, Wang Z, Liang B, Gao Y, Dai Y, Wu Q. Preparation of Physalis alkekengi L. calyx total flavonoids-chitosan composite film and its effect on preservation of chilled beef. Int J Biol Macromol 2024; 283:137768. [PMID: 39557237 DOI: 10.1016/j.ijbiomac.2024.137768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/13/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
In the present study, Physalis alkekengi L. calyx total flavonoids (PCTF) were extracted using the ultrasound-assisted ethanol method and separated and purified using macroporous resin AB-8. Physalis alkekengi L. calyx total flavonoid-chitosan (PCTF-CS) composite films containing 0.05 %, 0.10 % and 0.15 % PCTF were prepared using the purified PCTF laminated with chitosan (CS) and compared with single CS films, respectively, to investigate their mechanical properties, barrier properties, optical properties, microstructure, crystallography, thermal stability, water contact angle, particle size and zeta potential, antioxidant property, antimicrobial property, and preservation effect on chilled beef. The PCTF-CS films with PCTF additions had darker colors and higher mechanical and barrier properties than the CS films. In addition, the addition of PCTF improved the antioxidant and antimicrobial properties of the CS films. It enhances the freshness retention of fresh beef, and effectively inhibits the rise of weight loss, pH, total bacteria, total volatile basic nitrogen, and thiobarbituric acid reactive substances in beef, prolonging the shelf life of beef. These results indicate that the addition of PCTF can provide CS films with superior functional properties and bioactivities and that PCTF-CS composite films are a potential and promising packaging material for food preservation.
Collapse
Affiliation(s)
- Jiaming Wang
- Changchun University, Changchun, Jilin 130022, China
| | - Zhentao Li
- Changchun University, Changchun, Jilin 130022, China
| | - Xinru Wu
- Changchun University, Changchun, Jilin 130022, China
| | - Zifei Wang
- Changchun University, Changchun, Jilin 130022, China
| | - Bin Liang
- Changchun University, Changchun, Jilin 130022, China
| | - Yang Gao
- Jilin Academy of Agricultural Sciences, Changchun, Jilin, Province, 130033, China
| | - Yonggang Dai
- Jilin Academy of Agricultural Sciences, Changchun, Jilin, Province, 130033, China
| | - Qiong Wu
- Changchun University, Changchun, Jilin 130022, China.
| |
Collapse
|
2
|
Chen L, Lin Y, Yan X, Ni H, Chen F, He F. 3D-QSAR studies on the structure-bitterness analysis of citrus flavonoids. Food Funct 2023; 14:4921-4930. [PMID: 37158134 DOI: 10.1039/d3fo00601h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Despite their important bioactivities, the unpleasant bitter taste of citrus derived flavonoids limits their applications in the food industry, and the structure-bitterness relationship of flavonoids is still far from clear. In this study, 26 flavonoids were characterized by their bitterness threshold and their common skeleton using sensory evaluation and molecular superposition, respectively. The quantitative conformational relationship of the structure-bitterness of flavonoids was explored using 3D-QSAR based on comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA). The results showed that increases of a hydrogen bond donor at A-5 or B-3', a bulky group at A-8, or an electron-withdrawing group at B-4' would enhance the bitterness of flavonoids. The bitterness of some flavonoids was predicted and evaluated, and the results were similar to the bitter intensity of the counterparts from the 3D-QSAR and contour plots, confirming the validation of 3D-QSAR. This study explains the theory of the structure-bitterness relationship of flavonoids, by showing potential information for understanding the bitterness in citrus flavonoids and developing a debittering process.
Collapse
Affiliation(s)
- Lufang Chen
- College of Ocean Food and Biological Engineering, Jimei University, No.43, Yindou Road, QiaoYing District, Xiamen, Fujian 361021, China.
| | - Yanling Lin
- College of Ocean Food and Biological Engineering, Jimei University, No.43, Yindou Road, QiaoYing District, Xiamen, Fujian 361021, China.
| | - Xing Yan
- College of Ocean Food and Biological Engineering, Jimei University, No.43, Yindou Road, QiaoYing District, Xiamen, Fujian 361021, China.
| | - Hui Ni
- College of Ocean Food and Biological Engineering, Jimei University, No.43, Yindou Road, QiaoYing District, Xiamen, Fujian 361021, China.
- Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China
| | - Feng Chen
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634, USA
| | - Fan He
- College of Ocean Food and Biological Engineering, Jimei University, No.43, Yindou Road, QiaoYing District, Xiamen, Fujian 361021, China.
- Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China
| |
Collapse
|
3
|
Sheridan R, Spelman K. Polyphenolic promiscuity, inflammation-coupled selectivity: Whether PAINs filters mask an antiviral asset. Front Pharmacol 2022; 13:909945. [PMID: 36339544 PMCID: PMC9634583 DOI: 10.3389/fphar.2022.909945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/03/2022] [Indexed: 11/26/2023] Open
Abstract
The Covid-19 pandemic has elicited much laboratory and clinical research attention on vaccines, mAbs, and certain small-molecule antivirals against SARS-CoV-2 infection. By contrast, there has been comparatively little attention on plant-derived compounds, especially those that are understood to be safely ingested at common doses and are frequently consumed in the diet in herbs, spices, fruits and vegetables. Examining plant secondary metabolites, we review recent elucidations into the pharmacological activity of flavonoids and other polyphenolic compounds and also survey their putative frequent-hitter behavior. Polyphenols, like many drugs, are glucuronidated post-ingestion. In an inflammatory milieu such as infection, a reversion back to the active aglycone by the release of β-glucuronidase from neutrophils and macrophages allows cellular entry of the aglycone. In the context of viral infection, virions and intracellular virus particles may be exposed to promiscuous binding by the polyphenol aglycones resulting in viral inhibition. As the mechanism's scope would apply to the diverse range of virus species that elicit inflammation in infected hosts, we highlight pre-clinical studies of polyphenol aglycones, such as luteolin, isoginkgetin, quercetin, quercetagetin, baicalein, curcumin, fisetin and hesperetin that reduce virion replication spanning multiple distinct virus genera. It is hoped that greater awareness of the potential spatial selectivity of polyphenolic activation to sites of pathogenic infection will spur renewed research and clinical attention for natural products antiviral assaying and trialing over a wide array of infectious viral diseases.
Collapse
Affiliation(s)
| | - Kevin Spelman
- Massachusetts College of Pharmacy and Health Sciences, Boston, MA, United States
- Health Education and Research, Driggs, ID, United States
| |
Collapse
|
4
|
Gu Z, Xue Y, Li S, Adu-Frimpong M, Xu Y, Yu J, Xu X, Zhu Y. Design, Characterization, and Evaluation of Diosmetin-Loaded Solid Self-microemulsifying Drug Delivery System Prepared by Electrospray for Improved Bioavailability. AAPS PharmSciTech 2022; 23:106. [PMID: 35381887 DOI: 10.1208/s12249-022-02263-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/21/2022] [Indexed: 11/30/2022] Open
Abstract
Diosmetin (DIOS) is a functional compound with poor water solubility, bad permeability, and crystal form. Self-microemulsifying drug delivery system (SMEDDS) was an effective formulation to overcome these shortcomings. In this study, liquid SMEDDS was prepared using Capmul® MCM C8 EP/NF, Cremophor EL, and PEG 400 (2:5.6:2.4, w/w/w) as excipients. Then, the novel technology of electrospray solidified liquid SMEDDS and prepared solid SMEDDS for inhibiting crystallization. Polyvinyl pyrrolidone (PVP) was used as carrier to construct DIOS-loaded solid SMEDDS, with polyethylene oxide (PEO) contributing to the formation of regular sphere in the process of spinning. The particle size of solid SMEDDS (194 ± 5 nm) was much bigger than of liquid SMEDDS (25 ± 1 nm), while DIOS-loaded solid SMEDDS showed greater dissolution rates in pH 1.2 and pH 6.8 media through in vitro drug release study. The solid nanoparticles were smooth and uniform from the graph of a scanning electron microscope (SEM). The graph of a transmission electron microscope (TEM) showed that small droplets were loaded in the matrix. Furthermore, DIOS was encapsulated by matrix in amorphous state via differential scanning calorimetry (DSC) and attenuated total reflection Fourier transform infrared (ATR-FTIR). The crystalline of DIOS was not formed in solid SMEDDS due to the characteristic peaks of DIOS disappeared in X-ray diffraction (XRD) pattern. Therefore, the oral bioavailability of DIOS improved significantly compared with liquid SMEDDS (4.27-fold). Hence, solid SMEDDS could improve the solubility and bioavailability of DIOS, through transfer of the state of crystalline to amorphous by electrospray technology.
Collapse
|
5
|
Theile D, Wagner L, Bay C, Haefeli WE, Weiss J. Time-Resolved Effect of Interferon-Alpha 2a on Activities of Nuclear Factor Kappa B, Pregnane X Receptor and on Drug Disposition Genes. Pharmaceutics 2021; 13:808. [PMID: 34071580 PMCID: PMC8229072 DOI: 10.3390/pharmaceutics13060808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
Interferon-alpha (IFN-α) is suggested to cause pharmacokinetic drug interactions by lowering expression of drug disposition genes through affecting the activities of nuclear factor kappa B (NF-ĸB) and pregnane X receptor (PXR). The time-resolved impact of IFN-α 2a (1000 U/mL; 5000 U/mL; 2 h to 30 h) on the activities of NF-ĸB and PXR and mRNA expression (5000 U/mL; 24 h, 48 h) of selected drug disposition genes and on cytochrome P450 (CYP3A4) activity in LS180 cells (5000 U/mL; 24 h, 48 h) was evaluated using luciferase-based reporter gene assays, reverse transcription polymerase chain reaction, and luminescence-based CYP3A4 activity assays. The cross-talk between NF-ĸB activation and PXR suppression was evaluated by NF-ĸB blockage (10 µM parthenolide). IFN-α 2a initially (2 h, 6 h) enhanced NF-ĸB activity 2-fold and suppressed PXR activity by 30%. mRNA of CYP3A4 was halved, whereas UGT1A1 was increased (1.35-fold) after 24 h. After 48 h, ABCB1 expression was increased (1.76-fold). CYP3A4 activity remained unchanged after 24 h, but was enhanced after 48 h (1.35-fold). IFN-α 2a demonstrated short-term suppressive effects on PXR activity and CYP3A4 mRNA expression, likely mediated by activated NF-ĸB. Longer exposure enhanced CYP3A4 activity. Clinical trials should evaluate the relevance by investigating the temporal effects of IFN-α on CYP3A4 using a sensitive marker substrate.
Collapse
Affiliation(s)
| | | | | | | | - Johanna Weiss
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (D.T.); (L.W.); (C.B.); (W.E.H.)
| |
Collapse
|
6
|
Weiss J, Bajraktari-Sylejmani G, Haefeli WE. Low risk of the TMPRSS2 inhibitor camostat mesylate and its metabolite GBPA to act as perpetrators of drug-drug interactions. Chem Biol Interact 2021; 338:109428. [PMID: 33647240 PMCID: PMC9748837 DOI: 10.1016/j.cbi.2021.109428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/23/2021] [Indexed: 01/16/2023]
Abstract
Camostat mesylate, a potent inhibitor of the human transmembrane protease, serine 2 (TMPRSS2), is currently under investigation for its effectiveness in COVID-19 patients. For its safe application, the risks of camostat mesylate to induce pharmacokinetic drug-drug interactions with co-administered drugs should be known. We therefore tested in vitro the potential inhibition of important efflux (P-glycoprotein (P-gp, ABCB1), breast cancer resistance protein (BCRP, ABCG2)), and uptake transporters (organic anion transporting polypeptides OATP1B1, OATP1B3, OATP2B1) by camostat mesylate and its active metabolite 4-(4-guanidinobenzoyloxy)phenylacetic acid (GBPA). Transporter inhibition was evaluated using fluorescent probe substrates in transporter over-expressing cell lines and compared to the respective parental cell lines. Moreover, possible mRNA induction of pharmacokinetically relevant genes regulated by the nuclear pregnane X receptor (PXR) and aryl hydrocarbon receptor (AhR) was analysed in LS180 cells by quantitative real-time PCR. The results of our study for the first time demonstrated that camostat mesylate and GBPA do not relevantly inhibit P-gp, BCRP, OATP1B1 or OATP1B3. Only OATP2B1 was profoundly inhibited by GBPA with an IC50 of 11 μM. Induction experiments in LS180 cells excluded induction of PXR-regulated genes such as cytochrome P450 3A4 (CYP3A4) and ABCB1 and AhR-regulated genes such as CYP1A1 and CYP1A2 by camostat mesylate and GBPA. Together with the summary of product characteristics of camostat mesylate indicating no inhibition of CYP1A2, 2C9, 2C19, 2D6, and 3A4 in vitro, our data suggest a low potential of camostat mesylate to act as a perpetrator in pharmacokinetic drug-drug interactions. Only inhibition of OATP2B1 by GBPA warrants further investigation.
Collapse
Affiliation(s)
- Johanna Weiss
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
| | - Gzona Bajraktari-Sylejmani
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Walter Emil Haefeli
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| |
Collapse
|
7
|
HPLC-MS/MS method applied to an untargeted metabolomics approach for the diagnosis of "olive quick decline syndrome". Anal Bioanal Chem 2021; 414:465-473. [PMID: 33765220 PMCID: PMC8748322 DOI: 10.1007/s00216-021-03279-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/09/2021] [Accepted: 03/05/2021] [Indexed: 11/04/2022]
Abstract
Olive quick decline syndrome (OQDS) is a disorder associated with bacterial infections caused by Xylella fastidiosa subsp. pauca ST53 in olive trees. Metabolic profile changes occurring in infected olive trees are still poorly investigated, but have the potential to unravel reliable biomarkers to be exploited for early diagnosis of infections. In this study, an untargeted metabolomic method using high-performance liquid chromatography coupled to quadrupole-time-of-flight high-resolution mass spectrometry (HPLC-ESI-Q-TOF-MS) was used to detect differences in samples (leaves) from healthy (Ctrl) and infected (Xf) olive trees. Both unsupervised and supervised data analysis clearly differentiated the groups. Different metabolites have been identified as potential specific biomarkers, and their characterization strongly suggests that metabolism of flavonoids and long-chain fatty acids is perturbed in Xf samples. In particular, a decrease in the defence capabilities of the host after Xf infection is proposed because of a significant dysregulation of some metabolites belonging to flavonoid family. Moreover, oleic acid is confirmed as a putative diffusible signal factor (DSF). This study provides new insights into the host-pathogen interactions and confirms LC-HRMS-based metabolomics as a powerful approach for disease-associated biomarkers discovery in plants.
Collapse
|
8
|
Fliszár-Nyúl E, Mohos V, Csepregi R, Mladěnka P, Poór M. Inhibitory effects of polyphenols and their colonic metabolites on CYP2D6 enzyme using two different substrates. Biomed Pharmacother 2020; 131:110732. [PMID: 32942157 DOI: 10.1016/j.biopha.2020.110732] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023] Open
Abstract
Polyphenolic compounds (including flavonoids, chalcones, phenolic acids, and furanocoumarins) represent a common part of our diet, but are also the active ingredients of several dietary supplements and/or medications. These compounds undergo extensive metabolism by human biotransformation enzymes and the microbial flora of the colon. CYP2D6 enzyme metabolizes approximately 25% of the drugs, some of which has narrow therapeutic window. Therefore, its inhibition can lead to the development of pharmacokinetic interactions and the disruption of drug therapy. In this study, the inhibitory effects of 17 plant-derived compounds and 19 colonic flavonoid metabolites on CYP2D6 were examined, employing two assays with different test substrates. The O-demethylation of dextromethorphan was tested employing CypExpress 2D6 kit coupled to HPLC analysis; while the O-demethylation of another CYP2D6 specific substrate (AMMC) was investigated in a plate reader assay with BioVision Fluorometric CYP2D6 kit. Interestingly, some compounds (e.g., bergamottin) inhibited both dextromethorphan and AMMC demethylation; however, certain substances proved to be inhibitors only in one of the assays applied. Our results demonstrate that some polyphenols and colonic metabolites are inhibitors of CYP2D6-catalyzed reactions. Nevertheless, the inhibitory effects showed strong substrate dependence.
Collapse
Affiliation(s)
- Eszter Fliszár-Nyúl
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Szigeti út 12, H-7624, Pécs, Hungary; Lab-on-a-Chip Research Group, János Szentágothai Research Centre, Ifjúság útja 20, H-7624, Pécs, Hungary.
| | - Violetta Mohos
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Szigeti út 12, H-7624, Pécs, Hungary; Lab-on-a-Chip Research Group, János Szentágothai Research Centre, Ifjúság útja 20, H-7624, Pécs, Hungary.
| | - Rita Csepregi
- Lab-on-a-Chip Research Group, János Szentágothai Research Centre, Ifjúság útja 20, H-7624, Pécs, Hungary; Department of Laboratory Medicine, University of Pécs, Medical School, Ifjúság útja 13, H-7624, Pécs, Hungary.
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic.
| | - Miklós Poór
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Szigeti út 12, H-7624, Pécs, Hungary; Lab-on-a-Chip Research Group, János Szentágothai Research Centre, Ifjúság útja 20, H-7624, Pécs, Hungary.
| |
Collapse
|