1
|
Li G, Xie Y, Wang Q, Miao Z, Liu X, Zheng X. Biologically Active Peptides from Corn Gluten Meal Improve Microbiota Disorders Caused by Helicobacter pylori Infection in Mice. Molecules 2025; 30:705. [PMID: 39942808 PMCID: PMC11819815 DOI: 10.3390/molecules30030705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/28/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
This study investigated the potential effects of corn protein activity peptides (CPAPs) on inflammation response levels and gastrointestinal microbiota in Helicobacter pylori (H. pylori) infection mice. CPAPs significantly up-regulated the mRNA expression of the anti-inflammatory factor IL-10 and down-regulated the mRNA expression of the pro-inflammatory factors TGF-β, TLR4, MyD88, and NF-κB, indicating that CPAPs may antagonize H. pylori-induced inflammatory responses by inhibiting NF-κB signaling pathways. Through the intervention of CPAPs, H. pylori colonization in the stomach was significantly reduced. Additionally, the structural composition of the gastrointestinal microbiota improved, with an increase in abundance and diversity. These changes positively regulate gastrointestinal microbiota disorders in mice. In addition, the PICRUST function prediction of intestinal microbiota revealed that CPAPs may prevent or reduce metabolic disorders brought about by H. pylori, which improve biometabolic pathways by modulating intestinal microbiota composition. In conclusion, these findings suggest that CPAPs may prevent or mitigate metabolic disorders induced by H. pylori, offering theoretical support for the development of corn-protein-based functional foods.
Collapse
Affiliation(s)
- Guanlong Li
- Heilongjiang Provincial Key Laboratory of Corn Deep Processing Theory and Technology, College of Food and Bioengineering, Qiqihar University, Qiqihar 161006, China; (G.L.); (Y.X.); (Q.W.); (Z.M.)
| | - Yongchao Xie
- Heilongjiang Provincial Key Laboratory of Corn Deep Processing Theory and Technology, College of Food and Bioengineering, Qiqihar University, Qiqihar 161006, China; (G.L.); (Y.X.); (Q.W.); (Z.M.)
| | - Quanxin Wang
- Heilongjiang Provincial Key Laboratory of Corn Deep Processing Theory and Technology, College of Food and Bioengineering, Qiqihar University, Qiqihar 161006, China; (G.L.); (Y.X.); (Q.W.); (Z.M.)
| | - Zhengfei Miao
- Heilongjiang Provincial Key Laboratory of Corn Deep Processing Theory and Technology, College of Food and Bioengineering, Qiqihar University, Qiqihar 161006, China; (G.L.); (Y.X.); (Q.W.); (Z.M.)
| | - Xiaolan Liu
- Heilongjiang Provincial Key Laboratory of Corn Deep Processing Theory and Technology, College of Food and Bioengineering, Qiqihar University, Qiqihar 161006, China; (G.L.); (Y.X.); (Q.W.); (Z.M.)
| | - Xiqun Zheng
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| |
Collapse
|
2
|
Yuan Y, Wang X, Ling N, Zhou J, Zhao L, Ji B, Zhou F, Zhao L. Identification of Protein Hydrolysates from Sesame Meal and In Vivo Study of Their Gastric Mucosal Protective Effects. Foods 2024; 13:4178. [PMID: 39767120 PMCID: PMC11675995 DOI: 10.3390/foods13244178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/12/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
This study aimed to investigate the protective effects and defense mechanisms of a sesame meal protein hydrolysate against ethanol-induced acute gastric mucosal injury in mice. The target peptides in the hydrolysate were identified by LC-MS/MS, the activity was predicted by PeptideRanker, and the KM mice were orally administered distilled water, a sesame peptide, and omeprazole for 24 consecutive days. Acute gastric mucosal injury was then induced in mice with 70% ethanol, except for the CK group. The sesame peptide significantly inhibited the over-accumulation of ALT, AST, MDA, TNF-α, IL-1β, and MPO, while promoting the reduction in GSH, T-AOC, GSSG, and EGF expression. In addition, a Western blotting analysis showed that sesame peptide significantly up-regulated the expression of HO-1 and NQO1 proteins in the Nrf2/Keap1 signaling pathway, and down-regulated Keap1 protein. The defense effect of a sesame peptide on gastric mucosa may be achieved by alleviating the overproduction of lipid peroxides and improving the antioxidant activity.
Collapse
Affiliation(s)
- Yutong Yuan
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.Y.); (X.W.); (J.Z.); (B.J.)
| | - Xinyi Wang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.Y.); (X.W.); (J.Z.); (B.J.)
| | - Nan Ling
- Nanjing Weigang Dairy Co., Ltd., No. 366 Lantian Road, Nanjing 210095, China;
| | - Jingxuan Zhou
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.Y.); (X.W.); (J.Z.); (B.J.)
| | - Lei Zhao
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China;
| | - Baoping Ji
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.Y.); (X.W.); (J.Z.); (B.J.)
| | - Feng Zhou
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.Y.); (X.W.); (J.Z.); (B.J.)
| | - Liang Zhao
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China;
| |
Collapse
|
3
|
He L, Li A, Yu P, Qin S, Tan HY, Zou D, Wu H, Wang S. Therapeutic peptides in the treatment of digestive inflammation: Current advances and future prospects. Pharmacol Res 2024; 209:107461. [PMID: 39423954 DOI: 10.1016/j.phrs.2024.107461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/06/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
Digestive inflammation is a widespread global issue that significantly impacts quality of life. Recent advances have highlighted the unique potential of therapeutic peptides for treating this condition, owing to their specific bioactivity and high specificity. By specifically targeting key proteins involved in the pathological process and modulating biomolecular functions, therapeutic peptides offer a novel and promising approach to managing digestive inflammation. This review explores the development history, pharmacological characteristics, clinical applications, and regulatory mechanisms of therapeutic peptides in treating digestive inflammation. Additionally, the review addresses pharmacokinetics and quality control methods of therapeutic peptides, focusing on challenges such as low bioavailability, poor stability, and difficulties in delivery. The role of modern biotechnologies and nanotechnologies in overcoming these challenges is also examined. Finally, future directions for therapeutic peptides and their potential impact on clinical applications are discussed, with emphasis placed on their significant role in advancing medical and therapeutic practices.
Collapse
Affiliation(s)
- Liangliang He
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research and Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| | - Aijing Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research and Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| | - Ping Yu
- Department of Pharmacy, Xixi Hospital of Hangzhou, Hangzhou, China
| | - Shumin Qin
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, State Key Laboratory of Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Hor-Yue Tan
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR
| | - Denglang Zou
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, China.
| | - Haomeng Wu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, State Key Laboratory of Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.
| | - Shuai Wang
- Chinese Medicine Guangdong Laboratory, Hengqin, China; School of Pharmaceutical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
4
|
Xiao C, Li XG, Zhao M. Bioactive peptides as a novel strategy to prevent alcoholic liver injury. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 110:243-274. [PMID: 38906588 DOI: 10.1016/bs.afnr.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Alcohol intake has become one of the leading risks to human health and wellness, among which acute and/or chronic alcohol-induced liver injury is a leading threaten, with few therapeutic options other than abstinence. In recent years, studies suggested that certain bioactive peptides from food sources could represent natural and safe alternatives for the prevention of alcoholic liver injury. Hence, this chapter focus on the advanced research on bioactive peptides exerting hepatoprotective activity against alcoholic liver injury. The main sources of protein, strategies for the preparation of hepatoprotective hydrolysates and peptides, underlying mechanisms of peptides on hepatoprotection, and possible structure-activity relationship between peptides and hepatoprotective activity were summarized and discussed, aiming to give a systematic insight into the research progress of hepatoprotective peptides. However, more efforts would be needed to give a clearer insight into the underlying mechanisms and structure-activity relationship before using hepatoprotective peptides as functional food ingredients or dietary supplements.
Collapse
Affiliation(s)
- Chuqiao Xiao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, P.R. China.
| | - Xiang-Guang Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, P.R. China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, P.R. China.
| |
Collapse
|
5
|
Pan D, Yang L, Yang X, Xu D, Wang S, Gao H, Liu H, Xia H, Yang C, Lu Y, Sun J, Wang Y, Sun G. Potential nutritional strategies to prevent and reverse sarcopenia in aging process: Role of fish oil-derived ω-3 polyunsaturated fatty acids, wheat oligopeptide and their combined intervention. J Adv Res 2024; 57:77-91. [PMID: 37061218 PMCID: PMC10918331 DOI: 10.1016/j.jare.2023.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/24/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023] Open
Abstract
INTRODUCTION Nutritional support is potentially considered an essential step to prevent muscle loss and enhance physical function in older adults. OBJECTIVES This study aimed to assess the role of potential nutritional strategies, i.e., fish oil-derived ω-3 polyunsaturated fatty acids (PUFAs), wheat oligopeptide and their combined intervention, in preventing and reversing sarcopenia in aging process. METHODS One hundred 25-month-old Sprague-Dawley rats were randomly divided into 10 groups, and 10 newly purchased 6-month-old rats were included in young control group (n = 10). Fish oil (200, 400 or 800 mg/kg body weight), wheat oligopeptide (100, 200 or 400 mg/kg body weight), fish oil + wheat oligopeptide (800 + 100, 400 + 200 or 200 + 400 mg/kg body weight) or the equal volume of solvent were administered daily by gavage for 10 weeks. The effects of these interventions on natural aging rats were evaluated. RESULTS All intervention groups had a significant increase in muscle mass and grip strength and reduction in perirenal fat weight when compared to the aged control group (P < 0.05). The results of biochemical parameters, magnetic resonance imaging, proteomics and western blot suggested that the combination of wheat oligopeptide and fish oil-derived ω-3 PUFA, especially group WFM 2 (400 + 200 mg/kg body weight fish oil + wheat oligopeptide), was found to be more effective against aging-associated muscle loss than single intervention. Additionally, the interventions ameliorated fatty infiltration, muscle atrophy, and congestion in the intercellular matrix, and inflammatory cell infiltration in muscle tissue. The interventions also improved oxidative stress, anabolism, hormone levels, and inflammatory levels of skeletal muscle. CONCLUSIONS The combination of fish oil-derived ω-3 PUFA and wheat oligopeptide was found to be a promising nutritional support to prevent and reverse sarcopenia. The potential mechanism involved the promotion of protein synthesis and muscle regeneration, as well as the enhancement of muscle strength.
Collapse
Affiliation(s)
- Da Pan
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, 210009 Nanjing, PR China
| | - Ligang Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, 210009 Nanjing, PR China
| | - Xian Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, 210009 Nanjing, PR China
| | - Dengfeng Xu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, 210009 Nanjing, PR China
| | - Shaokang Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, 210009 Nanjing, PR China; School of Medicine, Xizang Minzu University, 712082 Xianyang, PR China
| | - Han Gao
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Hechun Liu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, 210009 Nanjing, PR China; Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, 210009 Nanjing, PR China
| | - Hui Xia
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, 210009 Nanjing, PR China
| | - Chao Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, 210009 Nanjing, PR China; Wuxi School of Medicine, Jiangnan University, 214122 Wuxi, PR China
| | - Yifei Lu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, 210009 Nanjing, PR China
| | - Jihan Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, 210009 Nanjing, PR China
| | - Yuanyuan Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, 210009 Nanjing, PR China
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, 210009 Nanjing, PR China.
| |
Collapse
|
6
|
Yuan Y, Wang X, Wang Y, Liu Y, Zhao L, Zhao L, Cai S. The Gastroprotective Effect of Walnut Peptides: Mechanisms and Impact on Ethanol-Induced Acute Gastric Mucosal Injury in Mice. Nutrients 2023; 15:4866. [PMID: 38068724 PMCID: PMC10708498 DOI: 10.3390/nu15234866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
The objective of this research was to explore the protective impact of walnut peptides (WP) against ethanol-induced acute gastric mucosal injury in mice and to investigate the underlying defense mechanisms. Sixty male BALB-c mice were divided into five groups, and they were orally administered distilled water, walnut peptides (200 and 400 mg/kg bw), and omeprazole (20 mg/kg bw) for 24 days. Acute gastric mucosal injury was then induced with 75% ethanol in all groups of mice except the blank control group. Walnut peptides had significant protective and restorative effects on tissue indices of ethanol-induced gastric mucosal damage, with potential gastric anti-ulcer effects. Walnut peptides significantly inhibited the excessive accumulation of alanine aminotransferase (ALT), aspartate transferase (AST), and malondialdehyde (MDA), while promoting the expression of reduced glutathione (GSH), total antioxidant capacity (T-AOC), glutathione disulfide (GSSG), and mouse epidermal growth factor (EGF). Furthermore, the Western blot analysis results revealed that walnut peptides significantly upregulated the expression of HO-1 and NQO1 proteins in the Nrf2 signaling pathway. The defensive impact of walnut peptides on the gastric mucosa may be achieved by mitigating the excessive generation of lipid peroxides and by boosting cellular antioxidant activity.
Collapse
Affiliation(s)
- Yutong Yuan
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (Y.Y.); (X.W.); (Y.L.); (L.Z.)
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
| | - Xinyi Wang
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (Y.Y.); (X.W.); (Y.L.); (L.Z.)
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
| | - Yumeng Wang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
| | - Yaqi Liu
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (Y.Y.); (X.W.); (Y.L.); (L.Z.)
| | - Liang Zhao
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (Y.Y.); (X.W.); (Y.L.); (L.Z.)
| | - Lei Zhao
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (Y.Y.); (X.W.); (Y.L.); (L.Z.)
| | - Shengbao Cai
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
7
|
Li G, Liu X, Miao Z, Hu N, Zheng X. Preparation of Corn Peptides with Anti-Adhesive Activity and Its Functionality to Alleviate Gastric Injury Induced by Helicobacter pylori Infection In Vivo. Nutrients 2023; 15:3467. [PMID: 37571404 PMCID: PMC10421185 DOI: 10.3390/nu15153467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
More than 50% of the world population is infected with Helicobacter pylori (H. pylori), which is classified as group I carcinogen by the WHO. H. pylori surface adhesins specifically recognize gastric mucosal epithelial cells' (GES-1 cells) receptor to complete the adhesion. Blocking the adhesion with an anti-adhesion compound is an effective way to prevent H. pylori infection. The present study found that corn protein hydrolysate, hydrolyzed by Neutral, effectively alleviated gastric injury induced by H. pylori infection through anti-adhesive and anti-inflammatory effects in vitro and in vivo. The hydrolysate inhibited H. pylori adhesion to GES-1 cells significantly, and its anti-adhesive activity was 50.44 ± 0.27% at 4 mg/mL, which indicated that the hydrolysate possessed a similar structure to the GES-1 cells' receptor, and exhibited anti-adhesive activity in binding to H. pylori. In vivo, compared with the H. pylori infection model group, the medium and high dose of the hydrolysate (400-600 mg/kg·bw) significantly decreased (p < 0.05) the amount of H. pylori colonization, pro-inflammatory cytokines (IL-6, IL-1β, TNF-α and MPO), chemokines (KC and MCP-1) as well as key metabolites of NF-κB signaling pathway levels (TLR4, MyD88 and NF-κB), and it increased antioxidant enzyme contents (SOD and GSH-Px) and the mitigation of H. pylori-induced pathological changes in the gastric mucosa. Taken together, these results indicated that the hydrolysate intervention can prevent H. pylori-induced gastric injury by anti-adhesive activity and inhibiting the NF-κB signaling pathway's induction of inflammation. Hence, the corn protein hydrolysate might act as a potential anti-adhesive agent to prevent H. pylori infection.
Collapse
Affiliation(s)
- Guanlong Li
- Heilongjiang Provincial Key Laboratory of Corn Deep Processing Theory and Technology, College of Food and Bioengineering, Qiqihar University, Qiqihar 161006, China; (G.L.); (Z.M.); (N.H.)
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China;
| | - Xiaolan Liu
- Heilongjiang Provincial Key Laboratory of Corn Deep Processing Theory and Technology, College of Food and Bioengineering, Qiqihar University, Qiqihar 161006, China; (G.L.); (Z.M.); (N.H.)
| | - Zhengfei Miao
- Heilongjiang Provincial Key Laboratory of Corn Deep Processing Theory and Technology, College of Food and Bioengineering, Qiqihar University, Qiqihar 161006, China; (G.L.); (Z.M.); (N.H.)
| | - Nan Hu
- Heilongjiang Provincial Key Laboratory of Corn Deep Processing Theory and Technology, College of Food and Bioengineering, Qiqihar University, Qiqihar 161006, China; (G.L.); (Z.M.); (N.H.)
| | - Xiqun Zheng
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China;
| |
Collapse
|
8
|
Fan Y, Xu E, Ma J, Li X, Liu Y, Xu L, Luo A. Isolation, Structural Characteristics Analysis of a Vigna unguiculata Polysaccharide VUP80-3 and Its Protective Effect on GES-1 Cells In Vitro. Molecules 2023; 28:5566. [PMID: 37513438 PMCID: PMC10383257 DOI: 10.3390/molecules28145566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Cowpea (Vigna unguiculata) is one of the main edible legume vegetables in China, and it can improve spleen and stomach function. A polysaccharide component (VUP80-3) has been isolated from V. unguiculata in this study. The average molecular weight of VUP80-3 is 6.43 × 104 Da, and the main monosaccharide group is glucose. The mass ratio of monosaccharide groups in the polysaccharide was glucose:galactose:arabinose:rhamnose:xylose:mannose:fucose = 152.36:24.50:16.53:8.13:1.26:0.97:0.82. NMR analysis showed that VUP80-3 has →4)-α-D-Galp (1→ and →4)-α-D-Glcp(1→ main chain and →3,4)-β-D-Glcp(1→, →4,6)-α-D-Glcp(1→ branch chains, and the terminal sugar is α-D-Glcp(1→. Biological activity test results showed that VUP80-3 at 1000 μg·mL-1 significantly increased the activity of ethanol injured GES-1 cells (p < 0.01) and significantly reduced reactive oxygen species (ROS) in ethanol injured GES-1 cells and inflammatory factors (IL-8, IL-1β and TNF-α,) in GES-1 cells. This compound also reduced the apoptosis rate (p < 0.05), thereby significantly reducing the oxidative damage caused by ethanol in GES-1 cells. Therefore, VUP80-3 is a potential drug to protect the gastric mucosa from damage.
Collapse
Affiliation(s)
- Yijun Fan
- Department of Landscape Plants, Sichuan Agricultural University, Chengdu 611130, China
| | - Erya Xu
- Department of Landscape Plants, Sichuan Agricultural University, Chengdu 611130, China
| | - Jie Ma
- Department of Landscape Plants, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuebing Li
- Department of Landscape Plants, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuanyuan Liu
- Department of Landscape Plants, Sichuan Agricultural University, Chengdu 611130, China
| | - Linlong Xu
- Department of Landscape Plants, Sichuan Agricultural University, Chengdu 611130, China
| | - Aoxue Luo
- Department of Landscape Plants, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
9
|
Wang Q, Shen F, Zhang J, Zhuang J, Feng F. Wheat peptides with different hydrolysis degree have similar relief effect in constipated mice. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
10
|
Jian S, Yang K, Zhang L, Zhang L, Xin Z, Wen C, He S, Deng J, Deng B. The modulation effects of plant‐derived bioactive ingredients on chronic kidney disease: Focus on the gut–kidney axis. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Shiyan Jian
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Kang Yang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Lingna Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Limeng Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Zhongquan Xin
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Chaoyu Wen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Shansong He
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Jinping Deng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| | - Baichuan Deng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science South China Agricultural University Guangzhou China
| |
Collapse
|
11
|
Liu L, Lu K, Xie J, Che H, Li H, Wancui X. Melanin from Sepia pharaonis ink alleviates mucosal damage and reduces inflammation to prevent alcohol-induced gastric ulcers. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
12
|
Essam Hameed Z, Majeed Shareef S, G. Shareef L, Majid Alsaraf K. Gastroprotective effect of Zinnia elegans extracts against ethanol-induced gastric mucosal damage through downregulation of TLR4 and inflammatory cytokines. F1000Res 2022; 11:1260. [DOI: 10.12688/f1000research.127129.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2025] Open
Abstract
Background: One of the most common gastrointestinal diseases is gastric ulcer (GU). The ethanolic extract from the aerial part of Zinnia elegans was created to test its ability to protect the gastric mucosa from damage caused by ethanol in mice. Method: Zinnia elegans ethanolic extract was administrated intragastrically once daily for three days. After the final intragastric dose, gastric ulcer in mice was created on the third day using 70% ethanol. The stomach tissues were extracted to assess the severity of the gastric mucosal changes. Results: Orally administered Zinnia elegans ethanolic extract reduced the severity of stomach mucosal changes. In addition, the levels of tumor necrosis factor‐α (TNF‐α), interleukin-1B (IL‐1β), and tool-like receptor (TLR4) activity in stomach tissues were all dramatically reduced after oral administration of the extract. These findings demonstrate that the anti-inflammatory properties of Zinnia elegans ethanolic extract protect against ethanol-induced stomach mucosal damage in mice. Conclusions: The results of this investigation offer some support for the creation of new treatments for stomach ulcers as an alternative to treating gastric damage brought on by alcohol consumption.
Collapse
|
13
|
Effects of enzymolysis method on the preparation of peptides from wheat flour. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Anti-Inflammatory Function of Plant-Derived Bioactive Peptides: A Review. Foods 2022; 11:foods11152361. [PMID: 35954128 PMCID: PMC9368234 DOI: 10.3390/foods11152361] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 12/14/2022] Open
Abstract
Inflammation is considered to be a crucial factor in the development of chronic diseases, eight of which were listed among the top ten causes of death worldwide in the World Health Organization’s World Health Statistics 2019. Moreover, traditional drugs for inflammation are often linked to undesirable side effects. As gentler alternatives to traditional anti-inflammatory drugs, plant-derived bioactive peptides have been shown to be effective interventions against various chronic diseases, including Alzheimer’s disease, cardiovascular disease and cancer. However, an adequate and systematic review of the structures and anti-inflammatory activities of plant-derived bioactive peptides has been lacking. This paper reviews the latest research on plant-derived anti-inflammatory peptides (PAPs), mainly including the specific regulatory mechanisms of PAPs; the structure–activity relationships of PAPs; and their enzymatic processing based on the structure–activity relationships. Moreover, current research problems for PAPs are discussed, such as the shallow exploration of mechanisms, enzymatic solution determination difficulty, low yield and unknown in vivo absorption and metabolism and proposed future research directions. This work aims to provide a reference for functional activity research, nutritional food development and the clinical applications of PAPs.
Collapse
|
15
|
Anti-neoplastic action of Cimetidine/Vitamin C on histamine and the PI3K/AKT/mTOR pathway in Ehrlich breast cancer. Sci Rep 2022; 12:11514. [PMID: 35798765 PMCID: PMC9262990 DOI: 10.1038/s41598-022-15551-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/24/2022] [Indexed: 11/09/2022] Open
Abstract
The main focus of our study is to assess the anti-cancer activity of cimetidine and vitamin C via combating the tumor supportive role of mast cell mediators (histamine, VEGF, and TNF-α) within the tumor microenvironment and their effect on the protein kinase A(PKA)/insulin receptor substrate-1(IRS-1)/phosphatidylinositol-3-kinase (PI3K)/serine/threonine kinase-1 (AKT)/mammalian target of rapamycin (mTOR) cue in Ehrlich induced breast cancer in mice. In vitro study was carried out to evaluate the anti-proliferative activity and combination index (CI) of the combined drugs. Moreover, the Ehrlich model was induced in mice via subcutaneous injection of Ehrlich ascites carcinoma cells (EAC) in the mammary fat pad, and then they were left for 9 days to develop obvious solid breast tumor. The combination therapy possessed the best anti-proliferative effect, and a CI < 1 in the MCF7 cell line indicates a synergistic type of drug interaction. Regarding the in vivo study, the combination abated the elevation in the tumor volume, and serum tumor marker carcinoembryonic antigen (CEA) level. The serum vascular endothelial growth factor (VEGF) level and immunohistochemical staining for CD34 as markers of angiogenesis were mitigated. Additionally, it reverted the state of oxidative stress and inflammation. Meanwhile, it caused an increment in apoptosis, which prevents tumor survival. Furthermore, it tackled the elevated histamine and cyclic adenosine monophosphate (cAMP) levels, preventing the activation of the (PKA/IRS-1/PI3K/AKT/mTOR) cue. Finally, we concluded that the synergistic combination provided a promising anti-neoplastic effect via reducing the angiogenesis, oxidative stress, increasing apoptosis,as well as inhibiting the activation of PI3K/AKT/mTOR cue, and suggesting its use as a treatment option for breast cancer.
Collapse
|
16
|
Sun L, Li M, Zhang S, Bao Z, Lin S. Mechanism of Ser-Ala-Gly-Pro-Ala-Phe treatment with a pulsed electric field to improve ethanol-induced gastric mucosa injury in mice. Food Funct 2022; 13:6716-6725. [PMID: 35662307 DOI: 10.1039/d2fo00567k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This paper focused on the mechanism of Ser-Ala-Gly-Pro-Ala-Phe (SAGPAF) treatment to improve gastric mucosal injury in mice. A gastric mucosa injury model induced by ethanol was established, and the superoxide dismutase (SOD) activity, malondialdehyde (MDA) content, nitric oxide (NO) content and myeloperoxidase (MPO) level were determined. We performed macroscopic and histopathological evaluation of the gastric organs. Moreover, we analyzed the mechanism of SAGPAF treatment by western blotting. Compared with the model group, the SOD activity and NO content in the medium-dose and high-dose SAGPAF groups of treated with 10 kV cm-1 field intensity were significantly increased. The MDA content and MPO level were decreased significantly. They significantly reduced the gastric mucosal injury induced by ethanol (21.17 ± 3.51% and 13.99 ± 2.00%) and the histopathological scores (3.83 ± 0.40 and 4.33 ± 0.37) (P < 0.05). Western blotting analysis showed that SAGPAF after pulsed electric field (PEF) treatment improved gastric injury by reducing protein phosphorylation. These findings provided strong evidence that PEF-treated SAGPAF enhanced the gastric mucosal barrier function by inhibiting the activation of the mitogen-activated protein kinase (MAPK) and nuclear factor kappa-B (NF-κB) signaling pathways, reducing the ethanol-induced inflammatory response and oxidative stress.
Collapse
Affiliation(s)
- Liangzi Sun
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P.R. China.
| | - Mengqi Li
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P.R. China.
| | - Shuyu Zhang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P.R. China.
| | - Zhijie Bao
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P.R. China.
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P.R. China.
| |
Collapse
|
17
|
Meng H, Song J, Li Y, Li X, Li X, Gou J, Nie Z, Wang J, Zheng Y, Wang M. Monascus vinegar protects against liver inflammation in high-fat-diet rat by alleviating intestinal microbiota dysbiosis and enteritis. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
18
|
Gong X, Hui X, Wu G, Morton JD, Brennan MA, Brennan CS. In vitro digestion characteristics of cereal protein concentrates as assessed using a pepsin-pancreatin digestion model. Food Res Int 2022; 152:110715. [PMID: 35181112 DOI: 10.1016/j.foodres.2021.110715] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/16/2021] [Accepted: 09/12/2021] [Indexed: 11/17/2022]
Abstract
An alkaline extraction method has been used in many studies to extract total protein from cereal samples. Wheat bran protein concentrate (WBPC), oat bran protein concentrate (OBPC), and barley protein concentrate (BPC) were prepared by alkaline extraction and isoelectric precipitation to study their functional and nutritional properties. The three protein concentrates were hydrolysed by an in vitro pepsin-pancreatin digestion model. Their digestibility (%) and degree of hydrolysis (DH%) were evaluated, and SDS-PAGE electrophoresis was used to illustrate the protein and peptides patterns. The change of the particle sizes and the release of the essential amino acids was followed during the digestion process. The in vitro digestibility of WBPC, OBPC and BPC was 87.4%, 96.1% and 76.9%, respectively. The DH% of protein concentrates were between 50 and 60%. The change of the particle size distribution values Dv(50) was assumed to be related to protein aggregations during the digestion. The protein fractions were identified and the degradation during the digestion and were analysed by SDS-PAGE; the gels of WBPC and OBPC digestion showed virtually complete degradation whereas the intensive bands of undigested protein were presented for BPC. The generation of the free amino acids and short chain peptides were significantly higher at the end of the intestinal digestion compared to the stages of before and after gastric digestion. Higher content of the deficient amino acids such as lysine and threonine were found comparing to the level of deficient amino acids in cereal grains but does not meet the daily recommended intake.
Collapse
Affiliation(s)
- Xi Gong
- Department of Wine Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, Christchurch, New Zealand; Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Xiaodan Hui
- Department of Wine Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, Christchurch, New Zealand; Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Gang Wu
- Department of Wine Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, Christchurch, New Zealand; Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - James D Morton
- Department of Wine Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, Christchurch, New Zealand
| | - Margaret A Brennan
- Department of Wine Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, Christchurch, New Zealand
| | - Charles S Brennan
- Department of Wine Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, Christchurch, New Zealand; Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand; Biosciences and Food Technologies, School of Science, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia.
| |
Collapse
|
19
|
Li M, Lv R, Xu X, Ge Q, Lin S. Tricholoma matsutake-Derived Peptides Show Gastroprotective Effects against Ethanol-Induced Acute Gastric Injury. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14985-14994. [PMID: 34866395 DOI: 10.1021/acs.jafc.1c07050] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Acute gastric injury caused by ethanol is a frequent disorder of the gastrointestinal tract. In this study, we investigated the potential gastroprotective effects of Tricholoma matsutake-derived peptides against ethanol-triggered acute gastric injury and the associated mechanisms. Peptides SDLKHFPF and SDIKHFPF significantly attenuated the ethanol-induced decrease in GES-1 cell survival (82.39 ± 1.93 and 80.10 ± 1.08% vs 56.58 ± 1.86%), inhibited GES-1 cell apoptosis, and alleviated the ethanol-induced gastric mucosal injury (64.76 ± 3.98 and 49.29 ± 3.25%), ulcer index (3.33 ± 0.47 and 4.67 ± 0.47 vs 6.67 ± 0.47), and histopathological changes in mice. Peptide treatment inhibited the phosphorylation and nuclear translocation of nuclear factor kappa B (NF-κB), the secretion of tumor necrosis factor-α, interleukin-6, and endothelin-1. In addition, T. matsutake peptide pretreatment increased growth factor secretion, upregulated B-cell lymphoma-2, downregulated Bcl-2-associated X (Bax), and cleaved cysteinyl aspartate specific proteinase 3, thereby promoting gastric cell survival. These findings strongly suggest that T. matsutake peptides attenuate ethanol-induced inflammatory responses and apoptosis by suppressing NF-κB signaling activation, thereby enhancing gastric epithelial barrier functions.
Collapse
Affiliation(s)
- Mengqi Li
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Renzhi Lv
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Xiaomeng Xu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Qi Ge
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| |
Collapse
|
20
|
Commiphora myrrh Supplementation Protects and Cures Ethanol-Induced Oxidative Alterations of Gastric Ulceration in Rats. Antioxidants (Basel) 2021; 10:antiox10111836. [PMID: 34829707 PMCID: PMC8614819 DOI: 10.3390/antiox10111836] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/11/2021] [Accepted: 11/14/2021] [Indexed: 12/21/2022] Open
Abstract
Gastric ulceration is a multifactorial disease defined as a defect in the gastric wall that extends through the muscularis mucosae into the deeper layers of the wall. The most common cause of gastric ulceration is alcohol consumption. In the current study, rats were gavaged by ethanol to investigate the protective (before ethanol) and curative (after ethanol) ability of Commiphora myrrh (myrrh) oil and extract against gastric ulcer oxidative alterations induced by ethanol. Myrrh significantly improved ulcer index, histomorphology, and periodic acid Schiff (PAS) impaired by ethanol. In addition, myrrh improved the antioxidant potential of gastric mucosa through enhancement of nuclear factor related to erythroid 2 (Nrf2), total glutathione (GSH), reduced GSH, and oxidized glutathione (GSSG), along with significant reduction in malondialdehyde (MDA) levels. Amelioration of gastric oxidative stress by myrrh enables gastric mucosa to counteract the ethanol’s inflammatory and apoptotic processes leading to improved gastric proliferation and healing. Interestingly, myrrh extract showed better protective and curative effects than myrrh oil against gastric ulceration.
Collapse
|