1
|
Khalil M, Abdallah H, Calasso M, Khalil N, Daher A, Missaoui J, Diab F, Zeaiter L, Vergani L, Di Ciaula A, Portincasa P. Herbal Medicine in Three Different Mediterranean Living Areas During the COVID-19 Pandemic: The Role of Polyphenolic-Rich Thyme-like Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:3340. [PMID: 39683135 DOI: 10.3390/plants13233340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/07/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024]
Abstract
Despite herbal medicine being popular across the Mediterranean basin, there is no evidence in favor of COVID-19 infection. This study investigates the utilization and effects of medicinal plants in Italy, Lebanon, and Tunisia during COVID-19 and its effects on post-COVID-19 pandemics. We used a tailored, web-based "Google Form" questionnaire with the random sampling method. We gathered 812 complete responses (Italy: 116, Lebanon: 557, and Tunisia: 139), revealing diverse demographics and symptom experiences. Fatigue prevailed across all groups (89.0-94.2%), while psychological impacts ranged from 20.1% to 30.9%, with higher rates in Lebanon. Post-COVID-19 symptoms affected 22.4% (Italy), 48.8% (Lebanon), and 31.7% (Tunisia). General use of herbs was consistent (41.4-50.4%), with 23.3% (Italy), 50.2% (Lebanon), and 65.5% (Tunisia) employing herbs for COVID-19 therapy. Notably, in Lebanon, Za'atar, a thyme-like plant, correlated with reduced symptoms, suggesting potential protective effects that are likely due to its polyphenol richness. This study underscores the persistent reliance on traditional medicinal plants remedies in the Mediterranean area, with regional variations. Further exploration of herbal compounds for COVID-19-like symptoms is warranted.
Collapse
Affiliation(s)
- Mohamad Khalil
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy
| | - Hala Abdallah
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy
| | - Maria Calasso
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy
| | - Nour Khalil
- Rammal Laboratory, Faculty of Sciences, Lebanese University, Al-Hadath Campus, Beirut 1003, Lebanon
| | - Ahmad Daher
- Rammal Laboratory, Faculty of Sciences, Lebanese University, Al-Hadath Campus, Beirut 1003, Lebanon
| | - Jihen Missaoui
- Research Laboratory of BIORESSOURCES-Integrative Biology & Valorisation BIOLIVAL (LR14 ES06) at ISBM, Monastir 5000, Tunisia
| | - Farah Diab
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132 Genova, Italy
| | - Lama Zeaiter
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132 Genova, Italy
| | - Laura Vergani
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132 Genova, Italy
| | - Agostino Di Ciaula
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy
| |
Collapse
|
2
|
Mudalal S. The occurrence of aflatoxins and labelling compliance of locally produced za'atar mix products. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:688-698. [PMID: 38662874 DOI: 10.1080/19440049.2024.2346260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/16/2024] [Indexed: 05/29/2024]
Abstract
Za'atar mix products are mainly composed of the dried and ground leaves and/or blossoms of wild and cultivated plant species (Origanum, Thymbra, Thymus, and Satureja) with the addition of condiments. The aim of this study was to evaluate the occurrence of aflatoxins, chemical composition (carbohydrates, fibre, fat, protein, moisture, ash, and acid contents), mineral content (Na, Ca, and K), and colour traits (L*a*b*) in relation to food label and food standards compliance. Measured and labelled fat content did not agree for approximately 91% of the samples. There was also no agreement between the measured and labelled fibre contents. The total content of aflatoxins in the tested samples ranged from 2 to 63.7 ng g-1. Eleven (69%) of the 16 analysed products had total aflatoxins higher than the maximum permitted limit of the European Commission. The KAS and LAZ products had significantly lighter colour (the highest L* values), while the ALAQ product had the darkest colour (lowest L* value). The range of sodium content in the tested products was 105.1-1425.3 mg/100 g. In conclusion, za'atar mix products that are available in local markets do not have accurate nutritional labelling information, and the occurrence of aflatoxins was very high. Further studies are needed to evaluate the reasons for these quality defects.
Collapse
Affiliation(s)
- Samer Mudalal
- Faculty of Agriculture and Veterinary Medicine, Department of Nutrition and Food Technology, An-Najah National University, Nablus, Palestine
| |
Collapse
|
3
|
Diab F, Beghelli D, Nuccitelli A, Lupidi G, Khalil M, Portincasa P, Vergani L. Supplementation with Thymbra spicata extract ameliorates lifespan, body-weight gain and Paraquat-induced oxidative stress in Drosophila melanogaster: An age- and sex-related study. J Funct Foods 2024; 114:106078. [DOI: 10.1016/j.jff.2024.106078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
|
4
|
Khalil M, Piccapane F, Vacca M, Celano G, Mahdi L, Perniola V, Apa CA, Annunziato A, Iacobellis I, Procino G, Calasso M, De Angelis M, Caroppo R, Portincasa P. Nutritional and Physiological Properties of Thymbra spicata: In Vitro Study Using Fecal Fermentation and Intestinal Integrity Models. Nutrients 2024; 16:588. [PMID: 38474717 DOI: 10.3390/nu16050588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/09/2024] [Accepted: 02/11/2024] [Indexed: 03/14/2024] Open
Abstract
(Poly)phenolic-rich Mediterranean plants such as Thymbra spicata have been associated with several health-promoting effects. The nutritional value, as well as physiological interaction of T. spicata with the gastrointestinal tract, has not been investigated before. The nutritional composition of T. spicata leaves was here characterized by standard analytical methods. T. spicata leaves were subjected to ethanolic extraction, simulated gastrointestinal digestion, and anaerobic microbial gut fermentation. Phenols/flavonoid contents and radical scavenging activity were assessed by colorimetric methods. The volatile organic compounds (VOCs) were detected by gas chromatography coupled with mass spectrometry. The effect on intestinal integrity was evaluated using a Caco-2 monolayers mounted in a Ussing chamber. T. spicata contains a high amount of fiber (12.3%) and unsaturated fatty acids (76% of total fat). A positive change in VOCs including short-chain fatty acids was observed without significant change in viable microbe. T. spicata and carvacrol (main phenolic compound) enhanced ionic currents in a concentration-dependent manner without compromising the Caco-2 monolayer's integrity. These effects were partially lost upon simulated digestion and completely abolished after colonic fermentation in line with polyphenols and carvacrol content. Conclusion: T. spicata represents a promising nutrient for the modulation of gut microbiota and the gut barrier. Further studies must better define its mechanisms of action.
Collapse
Affiliation(s)
- Mohamad Khalil
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy
| | - Francesca Piccapane
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy
| | - Mirco Vacca
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy
| | - Giuseppe Celano
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy
| | - Laura Mahdi
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy
| | - Valeria Perniola
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy
| | - Carmen Aurora Apa
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy
| | - Alessandro Annunziato
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy
| | - Ilaria Iacobellis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy
| | - Giuseppe Procino
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy
| | - Maria Calasso
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy
| | - Rosa Caroppo
- Department of Bioscience, Biotechnology and Environment, University of Bari, 70125 Bari, Italy
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy
| |
Collapse
|
5
|
Gedikoğlu A, Çıkrıkcı Erünsal S. Characterization of a Thymbra spicata essential oil–pectin nanoemulsion, and antimicrobial activity against foodborne pathogenic bacteria. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01855-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
6
|
Bioaccessibility and Bioavailability of Diet Polyphenols and Their Modulation of Gut Microbiota. Int J Mol Sci 2023; 24:ijms24043813. [PMID: 36835225 PMCID: PMC9961503 DOI: 10.3390/ijms24043813] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
It is generally accepted that diet-derived polyphenols are bioactive compounds with several potentially beneficial effects on human health. In general, polyphenols have several chemical structures, and the most representative are flavonoids, phenolic acids, and stilbenes. It should be noted that the beneficial effects of polyphenols are closely related to their bioavailability and bioaccessibility, as many of them are rapidly metabolized after administration. Polyphenols-with a protective effect on the gastrointestinal tract-promote the maintenance of the eubiosis of the intestinal microbiota with protective effects against gastric and colon cancers. Thus, the benefits obtained from dietary supplementation of polyphenols would seem to be mediated by the gut microbiota. Taken at certain concentrations, polyphenols have been shown to positively modulate the bacterial component, increasing Lactiplantibacillus spp. and Bifidobacterium spp. involved in the protection of the intestinal barrier and decreasing Clostridium and Fusobacterium, which are negatively associated with human well-being. Based on the diet-microbiota-health axis, this review aims to describe the latest knowledge on the action of dietary polyphenols on human health through the activity of the gut microbiota and discusses micro-encapsulation of polyphenols as a strategy to improve the microbiota.
Collapse
|
7
|
The Impact of Za'atar Antioxidant Compounds on the Gut Microbiota and Gastrointestinal Disorders: Insights for Future Clinical Applications. Antioxidants (Basel) 2023; 12:antiox12020426. [PMID: 36829984 PMCID: PMC9952350 DOI: 10.3390/antiox12020426] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Since the gut microbiota plays a pivotal role in host homeostasis and energy balance, changes in its composition can be associated with disease states through the promotion of immune-mediated inflammatory disorders and increasing intestinal permeability, ultimately leading to the impairment of intestinal barrier function. Za'atar is one of the most popular plant-based foods in the Eastern Mediterranean region. Za'atar is a mixture of different plant leaves, fruits, and seeds and contains hundreds of antioxidant compounds, especially polyphenols, and fiber, with pre-clinical and clinical evidence suggesting health-promoting effects in cardiovascular and metabolic disease. Za'atar compounds have also been studied from a gastrointestinal perspective, concerning both gut microbiota and gastrointestinal diseases. Antioxidants such as Za'atar polyphenols may provide beneficial effects in the complex interplay between the diet, gut microbiota, and intestinal permeability. To our knowledge, no studies have reported the effects of the whole Za'atar mixture, however, based on the pre-clinical studies published on components and single compounds found in Za'atar, we provide a clinical overview of the possible effects on the gastrointestinal tract, focusing mainly on carvacrol, rosmarinic acid, gallic acid, and other polyphenols. We also cover the potential clinical applications of Za'atar mixture as a possible nutraceutical in disorders involving the gastrointestinal tract.
Collapse
|
8
|
Li X, Liang H, Wu J, Wang J, Sun M, Semiromi D, Liu F, Kang Y. Investigation of herbal plant medicines Baishouwu on the mechanism of the digestion of body: A review. J Funct Foods 2023. [DOI: 10.1016/j.jff.2022.105379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
9
|
Caponio GR, Cofano M, Lippolis T, Gigante I, De Nunzio V, Difonzo G, Noviello M, Tarricone L, Gambacorta G, Giannelli G, De Angelis M, Notarnicola M. Anti-Proliferative and Pro-Apoptotic Effects of Digested Aglianico Grape Pomace Extract in Human Colorectal Cancer Cells. Molecules 2022; 27:molecules27206791. [PMID: 36296379 PMCID: PMC9611208 DOI: 10.3390/molecules27206791] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 12/12/2022] Open
Abstract
Grape pomace (GP)—the major by-product of winemaking processes—still contains bioactive molecules with known beneficial properties for human health, such as an antiradical scavenging activity or an antiproliferative activity of tumors. In vitro studies have demonstrated that GP polyphenols specifically influence colon cancer cell proliferation. In addition to previously published work, we tested the phenolic compounds of Aglianico GP following an in vitro simulated gastrointestinal digestion on colorectal cancer cell lines at different degrees of differentiation. Our experiments, using HT29 and SW480 cells, confirmed the anti-proliferative effect of GP gastrointestinal digested extract and provided intriguing insights on the way it influences the cancer cell features (i.e., viability, proliferation, and apoptosis). We observed that Aglianico GP extract showed a great ability to affect cell proliferation and apoptosis. Interestingly, both HT29 and SW480 cells produced a significant increase in Bax, and a significant increase in the Bax/Bcl-2 ratio and caspase-3. The gastrointestinal digested GP extract was previously characterized both for antioxidant activity and phenolic composition. As a result, the TPC and the antioxidant activity reached high values in the Aglianico GP digested extract, and the main compounds assessed by UHPLC-DAD were anthocyanins, phenolic acids, and flavonoids. This work shed light on the use of digested GP extract as a dietary ingredient, a very sustainable source of nutritional compounds with potential health benefits for colon cancer cell proliferation.
Collapse
Affiliation(s)
- Giusy Rita Caponio
- National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy
- Correspondence: (G.R.C.); (M.D.A.)
| | - Miriam Cofano
- National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy
| | - Tamara Lippolis
- National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy
| | - Isabella Gigante
- National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy
| | - Valentina De Nunzio
- National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy
| | - Graziana Difonzo
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
| | - Mirella Noviello
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
| | - Luigi Tarricone
- Council for Agricultural Research and Economics (CREA), Research Center for Viticulture and Enology, Via Casamassima 148, 70010 Bari, Italy
| | - Giuseppe Gambacorta
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
| | - Gianluigi Giannelli
- National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
- Correspondence: (G.R.C.); (M.D.A.)
| | - Maria Notarnicola
- National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy
| |
Collapse
|
10
|
Unveiling Antimicrobial and Antioxidant Compositional Differences between Dukkah and Za'atar via SPME-GCMS and HPLC-DAD. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196471. [PMID: 36235006 PMCID: PMC9572683 DOI: 10.3390/molecules27196471] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/09/2022]
Abstract
Interest in plant-based diets has been on the rise in recent years owing to the potential health benefits of their individual components and the notion that plant-based diets might reduce the incidence of several diseases. Egyptian dukkah and Syrian za’atar are two of the most historic and famous Middle Eastern herbal blends used for their anti-inflammatory, hypolipidemic, and antidiabetic effects. Headspace SPME-GCMS and HPLC-DAD were adopted for characterizing the aroma profile and phenolic compounds of both herbal blends, respectively. Further, vapor-phase minimum inhibitory concentration was employed for assessing each blend’s antibacterial potential, while their antioxidant potential was estimated via in vitro antioxidant assays. SPME headspace analysis indicated the abundance of ethers and monoterpene hydrocarbons, while HPLC revealed the presence of several phenolics including rosmarinic acid, ferulic acid, and rutin. Biological investigations affirmed that vapor-phase of the tested blends exhibited antibacterial activities against Gram-positive and Gram-negative pathogens, while the antioxidant potential of the blends was investigated and expressed as Trolox (125.15 ± 5.92 to 337.26 ± 13.84 μM T eq/mg) and EDTA (18.08 ± 1.62 to 51.69 41 ± 5.33 μM EDTA eq/mg) equivalent. The presented study offers the first insight into the chemical profile and biological activities of both dukkah and za’atar.
Collapse
|
11
|
Influence of Simulated In Vitro Gastrointestinal Digestion on the Phenolic Profile, Antioxidant, and Biological Activity of Thymbra spicata L. Extracts. Antioxidants (Basel) 2022; 11:antiox11091778. [PMID: 36139852 PMCID: PMC9495638 DOI: 10.3390/antiox11091778] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Plants or plant extracts are widely investigated for preventing/counteracting several chronic disorders. The oral route is the most common route for nutraceutical and drug administration. Currently, it is still unclear as to whether and how the pattern of phenolic compounds (PCs) found in the plants as well as their bioactivity could be modified during the gastrointestinal transit. Recent studies have revealed antioxidant and anti-steatotic properties of Thymbra spicata. Here, we investigated the possible loss of phytochemicals that occurs throughout the sequential steps of a simulated in vitro gastrointestinal (GI) digestion of aqueous and ethanolic extracts of aerial parts of T. spicata. Crude, digested, and dialyzed extracts were characterized in terms of their phenolic profile and biological activities. Total contents of carbohydrates, proteins, PCs, flavonoids, and hydroxycinnamic acids were quantified. The changes in the PC profile and in bioactive compounds upon the simulated GI digestion were monitored by HPLC–MS/MS analysis. The antioxidant activity was measured by different spectrophotometric assays, and the antiproliferative potential was assessed by using three representative human cancer cell lines. We observed that the simulated GI digestion reduced the phytochemical contents in both aqueous and ethanolic T. spicata extracts and modified the PC profile. However, T. spicata extracts improved their antioxidant potential after digestion, while a partial reduction in the antiproliferative activity was observed for the ethanolic extract. Therefore, our results could provide a scientific basis for the employment of T. spicata extract as valuable nutraceutical.
Collapse
|
12
|
The Potential of Lamiaceae Herbs for Mitigation of Overweight, Obesity, and Fatty Liver: Studies and Perspectives. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27155043. [PMID: 35956991 PMCID: PMC9370348 DOI: 10.3390/molecules27155043] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 11/17/2022]
Abstract
Numerous plants, plant extracts, and plant-derived compounds are being explored for their beneficial effects against overweight and liver diseases. Obesity is associated with the increased prevalence of non-alcoholic fatty liver disease (NAFLD), becoming the most common liver disease in Western countries. Obesity and NAFLD are closely associated with many other metabolic alternations such as insulin resistance, diabetes mellitus, and cardiovascular diseases. Many herbs of the Lamiaceae family are widely employed as food and spices in the Mediterranean area, but also in folk medicine, and their use for the management of metabolic disorders is well documented. Hereby, we summarized the scientific results of the medicinal and nutraceutical potential of plants from the Lamiaceae family for prevention and mitigation of overweight and fatty liver. The evidence indicates that Lamiaceae plants may be a cost-effective source of nutraceuticals and/or phytochemicals to be used in the management of metabolic-related conditions such as obesity and NAFLD. PubMed, Google Scholar, Scopus, and SciFinder were accessed to collect data on traditional medicinal plants, compounds derived from plants, their reported anti-obesity mechanisms, and therapeutic targets.
Collapse
|
13
|
Khalil M, Shanmugam H, Abdallah H, John Britto JS, Galerati I, Gómez-Ambrosi J, Frühbeck G, Portincasa P. The Potential of the Mediterranean Diet to Improve Mitochondrial Function in Experimental Models of Obesity and Metabolic Syndrome. Nutrients 2022; 14:3112. [PMID: 35956289 PMCID: PMC9370259 DOI: 10.3390/nu14153112] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 01/27/2023] Open
Abstract
The abnormal expansion of body fat paves the way for several metabolic abnormalities including overweight, obesity, and diabetes, which ultimately cluster under the umbrella of metabolic syndrome (MetS). Patients with MetS are at an increased risk of cardiovascular disease, morbidity, and mortality. The coexistence of distinct metabolic abnormalities is associated with the release of pro-inflammatory adipocytokines, as components of low-to-medium grade systemic inflammation and increased oxidative stress. Adopting healthy lifestyles, by using appropriate dietary regimens, contributes to the prevention and treatment of MetS. Metabolic abnormalities can influence the function and energetic capacity of mitochondria, as observed in many obesity-related cardio-metabolic disorders. There are preclinical studies both in cellular and animal models, as well as clinical studies, dealing with distinct nutrients of the Mediterranean diet (MD) and dysfunctional mitochondria in obesity and MetS. The term "Mitochondria nutrients" has been adopted in recent years, and it depicts the adequate nutrients to keep proper mitochondrial function. Different experimental models show that components of the MD, including polyphenols, plant-derived compounds, and polyunsaturated fatty acids, can improve mitochondrial metabolism, biogenesis, and antioxidant capacity. Such effects are valuable to counteract the mitochondrial dysfunction associated with obesity-related abnormalities and can represent the beneficial feature of polyphenols-enriched olive oil, vegetables, nuts, fish, and plant-based foods, as the main components of the MD. Thus, developing mitochondria-targeting nutrients and natural agents for MetS treatment and/or prevention is a logical strategy to decrease the burden of disease and medications at a later stage. In this comprehensive review, we discuss the effects of the MD and its bioactive components on improving mitochondrial structure and activity.
Collapse
Affiliation(s)
- Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Piazza Giulio Cesare 11, 70124 Bari, Italy; (M.K.); (H.S.); (H.A.); (J.S.J.B.); (I.G.)
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy
| | - Harshitha Shanmugam
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Piazza Giulio Cesare 11, 70124 Bari, Italy; (M.K.); (H.S.); (H.A.); (J.S.J.B.); (I.G.)
| | - Hala Abdallah
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Piazza Giulio Cesare 11, 70124 Bari, Italy; (M.K.); (H.S.); (H.A.); (J.S.J.B.); (I.G.)
| | - Jerlin Stephy John Britto
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Piazza Giulio Cesare 11, 70124 Bari, Italy; (M.K.); (H.S.); (H.A.); (J.S.J.B.); (I.G.)
| | - Ilaria Galerati
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Piazza Giulio Cesare 11, 70124 Bari, Italy; (M.K.); (H.S.); (H.A.); (J.S.J.B.); (I.G.)
| | - Javier Gómez-Ambrosi
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (J.G.-A.); (G.F.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, 28029 Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (J.G.-A.); (G.F.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, 28029 Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Piazza Giulio Cesare 11, 70124 Bari, Italy; (M.K.); (H.S.); (H.A.); (J.S.J.B.); (I.G.)
| |
Collapse
|
14
|
Umair M, Jabbar S, Zhaoxin L, Jianhao Z, Abid M, Khan KUR, Korma SA, Alghamdi MA, El-Saadony MT, Abd El-Hack ME, Cacciotti I, AbuQamar SF, El-Tarabily KA, Zhao L. Probiotic-Based Bacteriocin: Immunity Supplementation Against Viruses. An Updated Review. Front Microbiol 2022; 13:876058. [PMID: 36033850 PMCID: PMC9402254 DOI: 10.3389/fmicb.2022.876058] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Viral infections are a major cause of severe, fatal diseases worldwide. Recently, these infections have increased due to demanding contextual circumstances, such as environmental changes, increased migration of people and product distribution, rapid demographic changes, and outbreaks of novel viruses, including the COVID-19 outbreak. Internal variables that influence viral immunity have received attention along with these external causes to avert such novel viral outbreaks. The gastrointestinal microbiome (GIM), particularly the present probiotics, plays a vital role in the host immune system by mediating host protective immunity and acting as an immune regulator. Bacteriocins possess numerous health benefits and exhibit antagonistic activity against enteric pathogens and immunobiotics, thereby inhibiting viral infections. Moreover, disrupting the homeostasis of the GIM/host immune system negatively affects viral immunity. The interactions between bacteriocins and infectious viruses, particularly in COVID-19, through improved host immunity and physiology are complex and have not yet been studied, although several studies have proven that bacteriocins influence the outcomes of viral infections. However, the complex transmission to the affected sites and siRNA defense against nuclease digestion lead to challenging clinical trials. Additionally, bacteriocins are well known for their biofunctional properties and underlying mechanisms in the treatment of bacterial and fungal infections. However, few studies have shown the role of probiotics-derived bacteriocin against viral infections. Thus, based on the results of the previous studies, this review lays out a road map for future studies on bacteriocins for treating viral infections.
Collapse
Affiliation(s)
- Muhammad Umair
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
- Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, China
| | - Saqib Jabbar
- Food Science Research Institute (FSRI), National Agricultural Research Centre (NARC), Islamabad, Pakistan
| | - Lu Zhaoxin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhang Jianhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Abid
- Institute of Food and Nutritional Sciences, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Kashif-Ur R. Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Sameh A. Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mashail A. Alghamdi
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | | | - Ilaria Cacciotti
- Department of Engineering, INSTM RU, University of Rome “Niccolò Cusano”, Rome, Italy
| | - Synan F. AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, United Arab Emirates
- Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | - Liqing Zhao
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
- Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, China
| |
Collapse
|
15
|
Caponio GR, Lippolis T, Tutino V, Gigante I, De Nunzio V, Milella RA, Gasparro M, Notarnicola M. Nutraceuticals: Focus on Anti-Inflammatory, Anti-Cancer, Antioxidant Properties in Gastrointestinal Tract. Antioxidants (Basel) 2022; 11:antiox11071274. [PMID: 35883765 PMCID: PMC9312044 DOI: 10.3390/antiox11071274] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 02/07/2023] Open
Abstract
In recent years, nutraceuticals have gained great popularity, owing to their physiological and potential health effects, such as anti-inflammatory, anti-cancer, antioxidant, and prebiotic effects, and their regulation of lipid metabolism. Since the Mediterranean diet is a nutritionally recommended dietary pattern including high-level consumption of nutraceuticals, this review aimed to summarize the main results obtained by our in vitro and in vivo studies on the effects of the major constituents of the Mediterranean diet (i.e., extra virgin olive oil compounds, polyunsaturated fatty acids, and fruit components). Based on experimental studies, the therapeutic purpose of nutraceuticals depends on their bioavailability, solubility, toxicity, and delivery system. This review provides more in-depth knowledge on the effects linked to nutraceuticals administration on human health, focusing the gastrointestinal tract and suggesting specific dietary components for personalized adjuvant therapies.
Collapse
Affiliation(s)
- Giusy Rita Caponio
- National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy; (G.R.C.); (T.L.); (V.T.); (I.G.); (V.D.N.)
| | - Tamara Lippolis
- National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy; (G.R.C.); (T.L.); (V.T.); (I.G.); (V.D.N.)
| | - Valeria Tutino
- National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy; (G.R.C.); (T.L.); (V.T.); (I.G.); (V.D.N.)
| | - Isabella Gigante
- National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy; (G.R.C.); (T.L.); (V.T.); (I.G.); (V.D.N.)
| | - Valentina De Nunzio
- National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy; (G.R.C.); (T.L.); (V.T.); (I.G.); (V.D.N.)
| | - Rosa Anna Milella
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics, Turi, 70010 Bari, Italy; (R.A.M.); (M.G.)
| | - Marica Gasparro
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics, Turi, 70010 Bari, Italy; (R.A.M.); (M.G.)
| | - Maria Notarnicola
- National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy; (G.R.C.); (T.L.); (V.T.); (I.G.); (V.D.N.)
- Correspondence: ; Tel.: +39-080-4994342
| |
Collapse
|