1
|
Yu F, Yang D, Yang Y, Lu D, Gong Y. Photoredox-Enabled Direct and Three-Component Difluoroalkylative Modification of N-Aryl Glycinates. Org Lett 2025; 27:1072-1077. [PMID: 39825835 DOI: 10.1021/acs.orglett.4c04826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
A Cu(I) photoredox-enabled reaction that selectively incorporates a difluoroalkyl group into N-aryl glycine derivatives has been established. Using a bench-stable [Ph3PCF2H]+Br- salt, the -CF2H group could be installed either directly on the α-carbon of the glycine backbone or in a three-component fashion using an alkene as a bridge. A series of glycine derivatives have been evaluated, providing access to diverse unnatural amino esters and dipeptides with a -CHF2 unit. The studies of the compatibility of other perfluorinated alkyl radical precursors showed that the selectivity of direct α-coupling is closely associated with the electronic property of the radical, while the three-component reaction works well in most cases.
Collapse
Affiliation(s)
- Fangyuan Yu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Daoyi Yang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Yuanlin Yang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Dengfu Lu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
- Research Institute of Huazhong University of Science and Technology in Shenzhen, 9 Yuexing Third Road, Shenzhen, Guangdong 518063, China
| | - Yuefa Gong
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| |
Collapse
|
2
|
Wang Y, Liu S, Huang Y. Photoredox/copper-catalyzed gem-difluoroalkylation-cyanation of 1,3-enynes. Org Biomol Chem 2024; 22:4895-4900. [PMID: 38826121 DOI: 10.1039/d4ob00602j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
A photoredox/copper-catalyzed 1,4-difunctionalization of 1,3-enynes with readily available difluoroalkylating reagents and TMSCN was developed. This reaction proceeded at mild conditions, affording the corresponding difluoroalkylated allenes in good yields with high functional-group tolerance and excellent regioselectivity.
Collapse
Affiliation(s)
- Yachen Wang
- College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China.
| | - Shuai Liu
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, China.
| | - Yangen Huang
- College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China.
| |
Collapse
|
3
|
Chen X, Zhou XY, Liu HL, Ding C, Li JH. InCl 3/TfOH-Mediated Convenient Synthesis of 3-Alkylideneoxindoles from 2-Oxindoles with 1,3-Diones, Ketones, or Aldehydes. J Org Chem 2024; 89:4979-4989. [PMID: 38536713 DOI: 10.1021/acs.joc.4c00202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Two efficient and convenient methods for the synthesis of 3-alkylideneoxindoles are described in this paper. The InCl3/TfOH-mediated tandem Knoevenagel condensation-deacylation sequence of various 2-oxindoles with 1,3-diones or acetoacetate furnished 3-alkylideneoxindoles in satisfactory to excellent yields (up to >99% yield). Employing the reaction system, the condensation of 2-oxindoles with ketones or aldehydes also proceeded smoothly to produce 3-alkylideneoxindoles. This protocol can be amenable to scale up. The effect of acids on this condensation reaction and intermolecular competition experiments were investigated to understand the aspect of the reaction.
Collapse
Affiliation(s)
- Xia Chen
- School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui 553004, China
| | - Xiao-Yu Zhou
- School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui 553004, China
| | - Hai-Long Liu
- School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui 553004, China
| | - Chao Ding
- School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui 553004, China
| | - Jin-Hui Li
- School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui 553004, China
| |
Collapse
|
4
|
Ouyang Y, Qing FL. Photoredox Catalyzed Radical Fluoroalkylation with Non-Classical Fluorinated Reagents. J Org Chem 2024; 89:2815-2824. [PMID: 38385430 DOI: 10.1021/acs.joc.3c02815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The emergence of photocatalysis has greatly advanced radical fluoroalkylation reactions. Central to this advancement is the introduction and refinement of radical reagents, which play a pivotal role in driving these reactions forward. Intriguingly, some of these reagents, previously not recognized for their radical properties, have emerged as key players in this area. In this Perspective, we provide an overview of four representative reagents pioneered by our laboratory, which have subsequently garnered extensive application in broader research contexts, including difluorocarbene precursors bromodifluoromethylphosphonium bromide, electrophilic sulfonylation reagent triflic anhydride, and nucleophilic trifluoromethylation reagent methyl fluorosulfonyldifluoroacetate (Chen's reagent). The integration of phosphonium reagents, triflic anhydride, and methyl fluorosulfonyldifluoroacetate into photocatalysis has enabled some unexpected reactivities and now notably expanded the capabilities in radical difluoromethylation, trifluoromethylation, and difluoroalkylation. Our discussion highlights how these atypical reagents have enriched the toolkit available for radical fluoroalkylations, offering insights that could inspire future research and application in this area.
Collapse
Affiliation(s)
- Yao Ouyang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Feng-Ling Qing
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
5
|
Lin LQH, Rentería-Gómez Á, Martin RT, Zhang YQ, Ong KZW, Parris AB, Gutierrez O, Koh MJ. Selective 1,2-Hydroarylation(Alkenylation) of gem-Difluoroalkenes to Access (-CF 2 H) Motifs. Angew Chem Int Ed Engl 2024; 63:e202317935. [PMID: 38117662 PMCID: PMC11076007 DOI: 10.1002/anie.202317935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 12/22/2023]
Abstract
An emerging class of C-C coupling transformations that furnish drug-like building blocks involves catalytic hydrocarbonation of alkenes. However, despite notable advances in the field, hydrocarbon addition to gem-difluoroalkenes without additional electronic activation remains largely unsuccessful. This owes partly to poor reactivity and the propensity of difluoroalkenes to undergo defluorinative side reactions. Here, we report a nickel catalytic system that promotes efficient 1,2-selective hydroarylation and hydroalkenylation, suppressing defluorination and providing straightforward access to a diverse assortment of prized organofluorides bearing difluoromethyl-substituted carbon centers. In contrast to radical-based pathways and reactions triggered by hydrometallation via a nickel-hydride complex, our experimental and computational studies support a mechanism in which a catalytically active nickel-bromide species promotes selective carbonickelation with difluoroalkenes followed by alkoxide exchange and hydride transfer, effectively overcoming the difluoroalkene's intrinsic electronic bias.
Collapse
Affiliation(s)
- Leroy Qi Hao Lin
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| | | | - Robert T Martin
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Ying-Qi Zhang
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| | - Kelvin Zhi Wei Ong
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| | - Adam B Parris
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| | - Osvaldo Gutierrez
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Ming Joo Koh
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| |
Collapse
|
6
|
Wei Z, Zheng W, Wan X, Hu J. Copper-Catalyzed Enantioselective Difluoromethylation-Alkynylation of Olefins by Solving the Dilemma between Acidities and Reduction Potentials of Difluoromethylating Agents. Angew Chem Int Ed Engl 2023; 62:e202308816. [PMID: 37466977 DOI: 10.1002/anie.202308816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/20/2023]
Abstract
Molecules containing a difluoromethyl group or a propargylic stereocenter are widely used in pharmaceuticals and agrochemicals, and 1,2-functionalization of olefins is an important method for introducing the two groups into molecules simultaneously. The construction of the propargylic stereocenter with terminal alkynes usually requires bases. However, difluoromethylating agents with high reduction potentials often decompose in the presence of bases because of their acidities, and those with low reduction potentials are stable but difficult to undergo the desired single electron transfer (SET) reduction. Using the linear relationship between reduction potential differences (ΔE) and Hammett substituent constants (σ) of difluoromethyl aryl sulfones, we solved the dilemma between acidities and reduction potentials of difluoromethylating agents. Herein, we report the first enantioselective difluoromethylation-alkynylation of olefins with difluoromethyl 4-chlorophenyl sulfone with high enantioselectivity (>90 % ee). We also extended this asymmetric fluoroalkylation-alkynylation reaction with other fluoroalkyl sulfones, which enabled efficient installation of trifluoromethyl, difluoroalkyl, difluorobenzyl, (benzenesulfonyl)-difluoromethyl and monofluoromethyl groups into products.
Collapse
Affiliation(s)
- Zhiqiang Wei
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, China
| | - Weiqin Zheng
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Xiaolong Wan
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Jinbo Hu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, China
| |
Collapse
|
7
|
Lin D, Coe M, Krishnamurti V, Ispizua-Rodriguez X, Surya Prakash GK. Recent Advances in Visible Light-Mediated Radical Fluoro-alkylation, -alkoxylation, -alkylthiolation, -alkylselenolation, and -alkylamination. CHEM REC 2023; 23:e202300104. [PMID: 37212421 DOI: 10.1002/tcr.202300104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/20/2023] [Indexed: 05/23/2023]
Abstract
In the last few years, many reagents and protocols have been developed to allow for the efficient fluorofunctionalization of a diverse set of scaffolds ranging from alkanes, alkenes, alkynes, and (hetero)arenes. The concomitant rise of organofluorine chemistry and visible light-mediated synthesis have synergistically expanded the fields and have mutually benefitted from developments in both fields. In this context, visible light driven formations of radicals containing fluorine have been a major focus for the discovery of new bioactive compounds. This review details the recent advances and progress made in visible light-mediated fluoroalkylation and heteroatom centered radical generation.
Collapse
Affiliation(s)
- Daniel Lin
- Loker Hydrocarbon Research Institute Department of Chemistry, University of Southern California, 837 Bloom Walk, 90089-1661, Los Angeles, CA, USA
| | - Matthew Coe
- Loker Hydrocarbon Research Institute Department of Chemistry, University of Southern California, 837 Bloom Walk, 90089-1661, Los Angeles, CA, USA
| | - Vinayak Krishnamurti
- Loker Hydrocarbon Research Institute Department of Chemistry, University of Southern California, 837 Bloom Walk, 90089-1661, Los Angeles, CA, USA
| | - Xanath Ispizua-Rodriguez
- Loker Hydrocarbon Research Institute Department of Chemistry, University of Southern California, 837 Bloom Walk, 90089-1661, Los Angeles, CA, USA
| | - G K Surya Prakash
- Loker Hydrocarbon Research Institute Department of Chemistry, University of Southern California, 837 Bloom Walk, 90089-1661, Los Angeles, CA, USA
| |
Collapse
|
8
|
Zheng J, Wu Y, Cao D, Song S, Yang Y, Huang L, Chen D. Direct Difluoromethylation of 2-Arylidenindan-1,3-dione by Photoredox-catalyzed Radical Addition. J Fluor Chem 2023. [DOI: 10.1016/j.jfluchem.2023.110090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
9
|
Li P, Liu Q, Sun DQ, Chen XY. Catalytic charge transfer complex enabled difluoromethylation of enamides with difluoromethyltriphenylphosphonium bromide. Org Biomol Chem 2022; 20:7599-7603. [PMID: 36148776 DOI: 10.1039/d2ob01539k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A catalytic charge transfer complex strategy that enabled difluoromethylation and ethoxycarbonylmonofluoromethylation of enamides with phosphonium bromine salts has been reported. This strategy also provides a convenient approach for the synthesis of functionalized oxindoles and 1,1-diphenylethylenes with easily available phosphonium bromine salts and a catalytic amount of iodine anion.
Collapse
Affiliation(s)
- Ping Li
- School of life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, P. R. China.
| | - Qiang Liu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.
| | - De-Qun Sun
- School of life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, P. R. China.
| | - Xiang-Yu Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.
| |
Collapse
|
10
|
Wang L, Zhang Y, Zhu T, Wu J. Difluoromethylarylation of Alkynes from [Bis(difluoroacetoxy)iodo]benzene: Access to CF 2H-Containing Dibenzazepines. J Org Chem 2022; 87:7551-7556. [PMID: 35549257 DOI: 10.1021/acs.joc.2c00584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A photoinduced radical difluoromethylarylation via tandem addition-cyclization of alkynes with easily available [bis(difluoroacetoxy)iodo]benzene is accomplished, providing a straightforward and practical route for the construction of difluoromethylated dibenzazepines. Various sensitive functional groups can be compatible under photoinduced conditions. Mechanism investigation reveals that this transformation is initiated by the addition of alkyne with difluoromethyl radical, generated in situ from [bis(difluoroacetoxy)iodo]benzene.
Collapse
Affiliation(s)
- Luoyu Wang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Yan Zhang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Tonghao Zhu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
11
|
Visible-light-induced direct hydrodifluoromethylation of alkenes with difluoromethyltriphenylphosphonium iodide salt. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Zhu YY, Liu S, Huang Y, Qing FL, Xu XH. Photoredox catalyzed difluoro(phenylthio)methylation of 2,3-allenoic acids with {difluoro(phenylthio)methyl}triphenylphosphonium triflate. J Fluor Chem 2022. [DOI: 10.1016/j.jfluchem.2022.109969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Feng J, Jia X, Zhang S, Lu K, Cahard D. State of knowledge in photoredox-catalysed direct difluoromethylation. Org Chem Front 2022. [DOI: 10.1039/d2qo00551d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The combination of visible light photoredox catalysis with direct difluoromethylation has allowed the synthesis of a large choice of CF2H-containing value-added molecules under very mild reaction conditions.
Collapse
Affiliation(s)
- Jiaxu Feng
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China
- Department of Chemistry, College of Sciences, Tianjin University of Science & Technology, Tianjin 300457, P.R. China
| | - Xiaodong Jia
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China
| | - Shuyue Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China
| | - Kui Lu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China
- Department of Chemistry, College of Sciences, Tianjin University of Science & Technology, Tianjin 300457, P.R. China
| | - Dominique Cahard
- CNRS, UMR 6014 COBRA, Normandie Université, 76821 Mont Saint Aignan, France
| |
Collapse
|
14
|
Huang W, Ding X, Zi Y. Research Progress of Vinyl/Aryl Phosphonium Salts in Organic Synthesis. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202107065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Liu Q, Lu Y, Sheng H, Zhang C, Su X, Wang Z, Chen X. Visible‐Light‐Induced Selective Photolysis of Phosphonium Iodide Salts for Monofluoromethylations. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Qiang Liu
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Yu Lu
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - He Sheng
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Chao‐Shen Zhang
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiao‐Di Su
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhi‐Xiang Wang
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiang‐Yu Chen
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
16
|
Boldt AM, Dickinson SI, Ramirez JR, Benz-Weeden AM, Wilson DS, Stevenson SM. Reactions of benzyltriphenylphosphonium salts under photoredox catalysis. Org Biomol Chem 2021; 19:7810-7815. [PMID: 34549228 DOI: 10.1039/d1ob01570b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of benzyltriphenylphosphonium salts as alkyl radical precursors using photoredox catalysis is described. Depending on substituents, the benzylic radicals may couple to form C-C bonds or abstract a hydrogen atom to form C-H bonds. A natural product, brittonin A, was also synthesized using this method.
Collapse
Affiliation(s)
- Andrew M Boldt
- Department of Chemistry, Carthage College, Kenosha, WI 53140, USA.
| | | | | | | | - David S Wilson
- Department of Chemistry, Carthage College, Kenosha, WI 53140, USA.
| | | |
Collapse
|
17
|
Liu Q, Lu Y, Sheng H, Zhang CS, Su XD, Wang ZX, Chen XY. Visible-Light-Induced Selective Photolysis of Phosphonium Iodide Salts for Monofluoromethylations. Angew Chem Int Ed Engl 2021; 60:25477-25484. [PMID: 34490742 DOI: 10.1002/anie.202111006] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Indexed: 11/09/2022]
Abstract
The sigma (σ)-hole effect has emerged as a promising tool to construct novel architectures endowed with new properties. A simple yet effective strategy for the generation of monofluoromethyl radicals is a continuing challenge within the synthetic community. Fluoromethylphosphonium salts are easily available, air- and thermally stable, as well as simple-to-handle. Herein, we report the ability of the σ-hole effect to facilitate the visible-light-triggered photolysis of phosphonium iodide salts, a charge-transfer complex, selectively giving fluoromethyl radicals. The usefulness and versatility of this new protocol are demonstrated through the mono-, di-, and trifluoromethylation of a variety of alkenes.
Collapse
Affiliation(s)
- Qiang Liu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Lu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - He Sheng
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao-Shen Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Di Su
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiang-Yu Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
18
|
Affiliation(s)
- Jitender Singh
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247667 India
| | - Anuj Sharma
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247667 India
| |
Collapse
|
19
|
Liu J, Du C, Hao H. Crystal structure of 4-(2,2-difluoroethyl)-2,4-dimethyl-6-(trifluoromethyl)isoquinoline-1,3(2 H,4 H)-dione, C 14H 12F 5NO 2. Z KRIST-NEW CRYST ST 2021. [DOI: 10.1515/ncrs-2021-0179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C14H12F5NO2, monoclinic, P21/c (no. 14), a = 11.8292(10) Å, b = 11.0987(8) Å, c = 11.6480(10) Å, β = 115.282(11)°, V = 1382.8(2) Å3, Z = 4, R
gt
(F) = 0.0913, wR
ref
(F
2) = 0.1609, T = 293(2) K.
Collapse
Affiliation(s)
- Jianlian Liu
- School of Chemical Engineering , Northwest University , 710069, Xi’an , Shaanxi , People’s Republic of China
- School of Biological and Chemical Engineering, Nanyang Institute of Technology , 473004 , Nanyang , Henan , People’s Republic of China
| | - Chaojun Du
- School of Biological and Chemical Engineering, Nanyang Institute of Technology , 473004 , Nanyang , Henan , People’s Republic of China
| | - Hong Hao
- School of Chemical Engineering , Northwest University , 710069, Xi’an , Shaanxi , People’s Republic of China
| |
Collapse
|
20
|
Li H, Han X, Cao B. Crystal structure of 4-(2,2-difluoroethyl)-2,4,6-trimethylisoquinoline-1,3(2 H,4 H)-dione, C 14H 15F 2NO 2. Z KRIST-NEW CRYST ST 2021. [DOI: 10.1515/ncrs-2020-0635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
C14H15F2NO2, monoclinic, P21/c (no. 14), a = 11.5474(10) Å, b = 11.0737(7) Å, c = 11.4311(10) Å, β = 114.979(11)°, V = 1325.0(2) Å3, Z = 4, R
gt
(F) = 0.0738, wR
ref
(F
2) = 0.2034, T = 293(2) K.
Collapse
Affiliation(s)
- Huixing Li
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology , 473004 , Nanyang , Henan , People’s Republic of China
- School of Biological and Chemical Engineering, Nanyang Institute of Technology , 473004 , Nanyang , Henan , People’s Republic of China
| | - Xinlong Han
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology , 473004 , Nanyang , Henan , People’s Republic of China
- School of Biological and Chemical Engineering, Nanyang Institute of Technology , 473004 , Nanyang , Henan , People’s Republic of China
| | - Bin Cao
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology , 473004 , Nanyang , Henan , People’s Republic of China
- School of Biological and Chemical Engineering, Nanyang Institute of Technology , 473004 , Nanyang , Henan , People’s Republic of China
| |
Collapse
|
21
|
Zhao Y, Zhang Y, Liu Y, Zhu T, Wu J. Photoredox-catalyzed direct C(sp 2)–H difluoromethylation of enamides or heterocycles with [bis(difluoroacetoxy)iodo]benzene. Org Chem Front 2021. [DOI: 10.1039/d1qo00995h] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A photoredox-catalyzed direct C(sp2)–H difluoromethylation of enamides and heterocycles is accomplished by using easily accessible [bis(difluoroacetoxy)iodo]benzene as the CF2H source.
Collapse
Affiliation(s)
- Yun Zhao
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Yan Zhang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Yating Liu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Tonghao Zhu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
22
|
Zheng L, Tao K, Guo W. Recent Developments in Photo‐Catalyzed/Promoted Synthesis of Indoles and Their Functionalization: Reactions and Mechanisms. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001079] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Lvyin Zheng
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 People's Republic of China
| | - Kailiang Tao
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 People's Republic of China
| | - Wei Guo
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 People's Republic of China
| |
Collapse
|
23
|
Laishram RD, Chen J, Fan B. Progress in Visible Light‐Induced Difluroalkylation of Olefins. CHEM REC 2020; 21:69-86. [DOI: 10.1002/tcr.202000094] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/05/2020] [Accepted: 10/05/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Ronibala Devi Laishram
- Key Laboratory of Chemistry in Ethnic Medicinal Resource Yunnan Minzu University Kunming 650504 Yunnan China
| | - Jingchao Chen
- Key Laboratory of Chemistry in Ethnic Medicinal Resource Yunnan Minzu University Kunming 650504 Yunnan China
| | - Baomin Fan
- School of Chemistry and Environment Yunnan Minzu University Kunming 650504 Yunnan China
- Key Laboratory of Chemistry in Ethnic Medicinal Resource Yunnan Minzu University Kunming 650504 Yunnan China
| |
Collapse
|
24
|
Qin WB, Xiong W, Li X, Chen JY, Lin LT, Wong HNC, Liu GK. Visible-Light-Driven Difluoromethylation of Isocyanides with S-(Difluoromethyl)diarylsulfonium Salt: Access to a Wide Variety of Difluoromethylated Phenanthridines and Isoquinolines. J Org Chem 2020; 85:10479-10487. [DOI: 10.1021/acs.joc.0c00816] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Wen-Bing Qin
- School of Pharmaceutical Sciences, Shenzhen University Health Science Centre, Shenzhen University, 3688 Nanhai Avenue, Shenzhen 518060, China
| | - Wei Xiong
- School of Pharmaceutical Sciences, Shenzhen University Health Science Centre, Shenzhen University, 3688 Nanhai Avenue, Shenzhen 518060, China
| | - Xin Li
- School of Pharmaceutical Sciences, Shenzhen University Health Science Centre, Shenzhen University, 3688 Nanhai Avenue, Shenzhen 518060, China
| | - Jia-Yi Chen
- School of Pharmaceutical Sciences, Shenzhen University Health Science Centre, Shenzhen University, 3688 Nanhai Avenue, Shenzhen 518060, China
| | - Li-Ting Lin
- School of Pharmaceutical Sciences, Shenzhen University Health Science Centre, Shenzhen University, 3688 Nanhai Avenue, Shenzhen 518060, China
| | - Henry N. C. Wong
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Guo-Kai Liu
- School of Pharmaceutical Sciences, Shenzhen University Health Science Centre, Shenzhen University, 3688 Nanhai Avenue, Shenzhen 518060, China
| |
Collapse
|
25
|
Wu N, Huang Y, Xu X, Qing F. Copper‐Catalyzed Hydrodifluoroallylation of Terminal Alkynes to Access (
E
)‐1,1‐Difluoro‐1,4‐Dienes. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Nuo‐Yi Wu
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and BiotechnologyDonghua University 2999 North Renmin Lu Shanghai 201620 People's Republic of China
| | - Yangen Huang
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and BiotechnologyDonghua University 2999 North Renmin Lu Shanghai 201620 People's Republic of China
| | - Xiu‐Hua Xu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of ScienceChinese Academy of Science 345 Lingling Lu Shanghai 200032 People's Republic of China
| | - Feng‐Ling Qing
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and BiotechnologyDonghua University 2999 North Renmin Lu Shanghai 201620 People's Republic of China
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of ScienceChinese Academy of Science 345 Lingling Lu Shanghai 200032 People's Republic of China
| |
Collapse
|
26
|
Koike T, Akita M. Recent progress in photochemical radical di- and mono-fluoromethylation. Org Biomol Chem 2019; 17:5413-5419. [PMID: 31086872 DOI: 10.1039/c9ob00734b] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recently, photoinduced radical difluoromethylation has emerged as a step-economical synthetic method of CHF2-containing compounds. In this article, difluoromethylation of alkenes, isonitriles and aryl bromides promoted by photoredox catalysis is described together with a non-catalytic photoinduced system. Representative reactions will be discussed for each highlighted difluoromethylating reagent. In addition, related monofluoromethylation with their corresponding monofluoromethylating reagents is also discussed.
Collapse
Affiliation(s)
- Takashi Koike
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, R1-27, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan.
| | | |
Collapse
|
27
|
Tong CL, Xu XH, Qing FL. Oxidative Hydro-, Bromo-, and Chloroheptafluoroisopropylation of Unactivated Alkenes with Heptafluoroisopropyl Silver. Org Lett 2019; 21:9532-9535. [DOI: 10.1021/acs.orglett.9b03705] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Chao-Lai Tong
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Xiu-Hua Xu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Feng-Ling Qing
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China
| |
Collapse
|
28
|
|
29
|
Zhu TH, Zhang ZY, Tao JY, Zhao K, Loh TP. Regioselective and Stereoselective Difluoromethylation of Enamides with Difluoromethyltriphenylphosphonium Bromide via Photoredox Catalysis. Org Lett 2019; 21:6155-6159. [DOI: 10.1021/acs.orglett.9b02361] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Tong-Hao Zhu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
- Institute of Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Ze-Yu Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Ji-Yu Tao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Kai Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Teck-Peng Loh
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
30
|
Lemos A, Lemaire C, Luxen A. Progress in Difluoroalkylation of Organic Substrates by Visible Light Photoredox Catalysis. Adv Synth Catal 2019; 361:1500-1537. [PMID: 31680791 PMCID: PMC6813635 DOI: 10.1002/adsc.201801121] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/15/2018] [Indexed: 01/30/2023]
Abstract
The selective incorporation of fluorinated motifs, in particular CF2FG (FG=a functional group) and CF2H groups, into organic compounds has attrracted increasing attention since organofluorine molecules are of the utmost importance in the areas of nuclear imaging, pharmaceutical, agrochemical, and material sciences. A variety of synthetic approaches has been employed in late-stage difluoroalkylation reactions. Visible light photoredox catalysis for the production of CF2FG and CF2H radicals has provided a more sustainable alternative to other conventional radical-triggered reactions from the viewpoint of safety, cost, availability, and "green" chemistry. A wide range of difluoroalkylating reagents has been successfully implemented in these organic transformations in the presence of transition metal complexes or organic photocatalysts. In most cases, upon excitation via visible light irradiation with fluorescent light bulbs or blue light-emitting diode (LED) lamps, these photocatalysts can act as both reductive and oxidative quenchers, thus enabling the application of electron-donor or electron-acceptor difluoroalkylating reagents for the generation of CF2FG and CF2H radicals. Subsequent radical addition to substrates and additional organic transformations afford the corresponding difluoroalkylated derivatives. The present review describes the distinct strategies for the transition metal- and organic-photocatalyzed difluoroalkylation of a broad range of organic substrates by visible light irradiation reported in the literature since 2014.
Collapse
Affiliation(s)
- Agostinho Lemos
- GIGA Cyclotron Research Centre In Vivo ImagingUniversity of LiègeAllée du 6 Août 8,4000LiègeBelgium
| | - Christian Lemaire
- GIGA Cyclotron Research Centre In Vivo ImagingUniversity of LiègeAllée du 6 Août 8,4000LiègeBelgium
| | - André Luxen
- GIGA Cyclotron Research Centre In Vivo ImagingUniversity of LiègeAllée du 6 Août 8,4000LiègeBelgium
| |
Collapse
|
31
|
Borodkin GI, Shubin VG. Progress and prospects in the use of photocatalysis for the synthesis of organofluorine compounds. RUSSIAN CHEMICAL REVIEWS 2019. [DOI: 10.1070/rcr4833] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Data on the synthesis of fluorinated organic compounds by photocatalysis are systematically considered and analyzed. The attention is focused on the mechanisms of photocatalytic reactions and the selectivity problem.
The bibliography includes 173 references.
Collapse
|
32
|
Festa AA, Voskressensky LG, Van der Eycken EV. Visible light-mediated chemistry of indoles and related heterocycles. Chem Soc Rev 2019; 48:4401-4423. [DOI: 10.1039/c8cs00790j] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The impact of visible light-promoted chemistry on the functionalization of indoles and related heterocycles is reviewed.
Collapse
Affiliation(s)
- Alexey A. Festa
- Peoples’ Friendship University of Russia (RUDN University)
- Moscow
- Russian Federation
| | | | - Erik V. Van der Eycken
- Peoples’ Friendship University of Russia (RUDN University)
- Moscow
- Russian Federation
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC)
- Department of Chemistry
| |
Collapse
|
33
|
Yu J, Lin JH, Cao YC, Xiao JC. Visible-light-induced radical hydrodifluoromethylation of alkenes. Org Chem Front 2019. [DOI: 10.1039/c9qo00919a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Visible-light-induced radical hydrodifluoromethylation of alkenes with the phosphonium salt [Ph3P+CF2H Br−] under transition-metal-free conditions is described.
Collapse
Affiliation(s)
- Jiao Yu
- Key Laboratory of Organofluorine Chemistry
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Science
- Shanghai 200032
| | - Jin-Hong Lin
- Key Laboratory of Organofluorine Chemistry
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Science
- Shanghai 200032
| | - Yu-Cai Cao
- State Key Laboratory of Polyolefins and Catalysis
- Shanghai Key Laboratory of Catalysis Technology for Polyolefins
- Shanghai Research Institute of Chemical Industry Co. Ltd
- China
| | - Ji-Chang Xiao
- Key Laboratory of Organofluorine Chemistry
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Science
- Shanghai 200032
| |
Collapse
|
34
|
Yang Q, Li C, Qi ZC, Qiang XY, Yang SD. Photocatalyzed Intermolecular Aminodifluoromethylphosphonation of Alkenes: Facile Synthesis of α,α-Difluoro-γ-aminophosphonates. Chemistry 2018; 24:14363-14367. [PMID: 29979472 DOI: 10.1002/chem.201803409] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Indexed: 01/01/2023]
Abstract
An efficient and practical method for the synthesis of α,α-difluoro-γ-aminophosphonates through photocatalyzed intermolecular aminodifluoromethylphosphonation of alkenes has been developed. In this reaction, difluoromethylphosphonate is used as an important fluorinated reagent. Furthermore, the mild reaction conditions, simple operation, and broad substrate scope make this protocol very practical and attractive. The derivatization reaction in the synthesis of difluoromethylphosphonated chiral binaphthylamine ligands and α,α-difluoro-γ-aminophosphoric acid highlight the applicability of this method.
Collapse
Affiliation(s)
- Qiang Yang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Chong Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Zhi-Chao Qi
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Xiao-Yue Qiang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Shang-Dong Yang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, P. R. China.,State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics Chinese, Academy of Sciences, Lanzhou, 730000, P. R. China
| |
Collapse
|
35
|
Affiliation(s)
- Sebastián Barata-Vallejo
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Orgánica, Junín 954, CP 1113 Buenos Aires, Argentina
| | - Maria Victoria Cooke
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Orgánica, Junín 954, CP 1113 Buenos Aires, Argentina
| | - Al Postigo
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Orgánica, Junín 954, CP 1113 Buenos Aires, Argentina
| |
Collapse
|