1
|
Simonet B, Herrscher V, Witjaksono C, Chaignon P, Massicot F, Vasse JL, Seemann M, Behr JB. Carbohydrate-Templated Syntheses of Trifluoromethyl-Substituted MEP Analogues for the Study of the Methylerythritol Phosphate Pathway. J Org Chem 2023; 88:15832-15843. [PMID: 37917513 DOI: 10.1021/acs.joc.3c01910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Trifluoromethyl analogues of methylerythritol phosphate (MEP) and 2-C-methyl-erythritol 2,4-cyclodiphosphate (MEcPP), natural substrates of key enzymes from the MEP pathway, were prepared starting from d-glucose as the chiral template to secure absolute configurations. The obligate trifluoromethyl group was inserted with complete diastereoselectivity using the Ruppert-Prakash nucleophile. Target compounds were assayed against the corresponding enzymes showing that trifluoro-MEP did not disrupt IspD activity, whereas trifluoro-MEcPP induced 40% inhibition of IspG at 1 mM.
Collapse
Affiliation(s)
- Basile Simonet
- Institut de Chimie moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, 51687 Reims, Cedex 2, France
| | - Vivien Herrscher
- Institut de Chimie moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, 51687 Reims, Cedex 2, France
| | - Clea Witjaksono
- Equipe Chimie Biologique et Applications Thérapeutiques, Institut de Chimie de Strasbourg UMR 7177, Université de Strasbourg/CNRS, 4, Rue Blaise Pascal, 67070 Strasbourg, France
| | - Philippe Chaignon
- Equipe Chimie Biologique et Applications Thérapeutiques, Institut de Chimie de Strasbourg UMR 7177, Université de Strasbourg/CNRS, 4, Rue Blaise Pascal, 67070 Strasbourg, France
| | - Fabien Massicot
- Institut de Chimie moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, 51687 Reims, Cedex 2, France
| | - Jean-Luc Vasse
- Institut de Chimie moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, 51687 Reims, Cedex 2, France
| | - Myriam Seemann
- Equipe Chimie Biologique et Applications Thérapeutiques, Institut de Chimie de Strasbourg UMR 7177, Université de Strasbourg/CNRS, 4, Rue Blaise Pascal, 67070 Strasbourg, France
| | - Jean-Bernard Behr
- Institut de Chimie moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, 51687 Reims, Cedex 2, France
| |
Collapse
|
2
|
Wei X, Wang P, Liu F, Ye X, Xiong D. Drug Discovery Based on Fluorine-Containing Glycomimetics. Molecules 2023; 28:6641. [PMID: 37764416 PMCID: PMC10536126 DOI: 10.3390/molecules28186641] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Glycomimetics, which are synthetic molecules designed to mimic the structures and functions of natural carbohydrates, have been developed to overcome the limitations associated with natural carbohydrates. The fluorination of carbohydrates has emerged as a promising solution to dramatically enhance the metabolic stability, bioavailability, and protein-binding affinity of natural carbohydrates. In this review, the fluorination methods used to prepare the fluorinated carbohydrates, the effects of fluorination on the physical, chemical, and biological characteristics of natural sugars, and the biological activities of fluorinated sugars are presented.
Collapse
Affiliation(s)
- Xingxing Wei
- Department of Pharmacy, Changzhi Medical College, No. 161, Jiefang East Street, Changzhi 046012, China
| | - Pengyu Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. No. 38, Beijing 100191, China (F.L.); (X.Y.)
| | - Fen Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. No. 38, Beijing 100191, China (F.L.); (X.Y.)
| | - Xinshan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. No. 38, Beijing 100191, China (F.L.); (X.Y.)
| | - Decai Xiong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. No. 38, Beijing 100191, China (F.L.); (X.Y.)
| |
Collapse
|
3
|
Xie J, Lan F, Liu X, Weng W, Ding N. The Synthesis of Fluorinated Carbohydrates Using Sulfuryl Fluoride as the Deoxyfluorination Reagent. Org Lett 2023; 25:3796-3799. [PMID: 37191445 DOI: 10.1021/acs.orglett.3c01305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Fluorination of carbohydrates has been one of the strategies to increase their enzymatic and chemical stabilities and reduce their hydrophilicities, making this modification attractive for drug discovery purposes. The synthesis of monofluorinated carbohydrates was achieved under mild conditions by using SO2F2 as the deoxyfluorination reagent in the presence of a base without extra fluoride additives. This method features low toxicity, easy availability, low cost, and high efficiency and can be subjected to diverse sugar units.
Collapse
Affiliation(s)
- Jiahao Xie
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Fangzhou Lan
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Xuyuan Liu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Weizhao Weng
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Ning Ding
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| |
Collapse
|
4
|
Padilla-Pérez MC, Sánchez-Fernández EM, González-Bakker A, Puerta A, Padrón JM, Martín-Loro F, Arroba AI, García Fernández JM, Mellet CO. Fluoro-labelled sp 2-iminoglycolipids with immunomodulatory properties. Eur J Med Chem 2023; 255:115390. [PMID: 37137247 DOI: 10.1016/j.ejmech.2023.115390] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 05/05/2023]
Abstract
The unique electronic properties of the fluorine atom make its strategic incorporation into a bioactive compound a very useful tool in the design of drugs with optimized pharmacological properties. In the field of the carbohydrates, its selective installation at C2 position has proven particularly interesting, some 2-deoxy-2-fluorosugar derivatives being currently in the market. We have now transferred this feature into immunoregulatory glycolipid mimetics that contain a sp2-iminosugar moiety, namely sp2-iminoglycolipids (sp2-IGLs). The synthesis of two epimeric series of 2-deoxy-2-fluoro-sp2-IGLs, structurally related to nojirimycin and mannonojirimycin, has been accomplished by sequential Selectfluor-mediated fluorination and thioglycosidation of sp2-iminoglycals. Exclusively the α-anomer is obtained regardless of the configurational profile of the sp2-IGL (d-gluco or d-manno), highlighting the overwhelming anomeric effect in these prototypes. Notably, the combination of a fluorine atom at C2 and an α-oriented sulfonyl dodecyl lipid moiety in compound 11 led to remarkable anti-proliferative properties, featuring similar GI50 values than the chemotherapy drug Cisplatin against several tumor cell lines and better selectivity. The biochemical data further evidence a strong reduction of the number of tumor cell colonies and apoptosis induction. Mechanistic investigations revealed that this fluoro-sp2-IGL induces the non-canonical activation mode of the mitogen-activated protein kinase signaling pathway, causing p38α autoactivation under an inflammatory context.
Collapse
Affiliation(s)
- M Carmen Padilla-Pérez
- Department of Organic Chemistry, Faculty of Chemistry, University of Sevilla, C/ Profesor García González 1, 41012, Sevilla, Spain
| | - Elena M Sánchez-Fernández
- Department of Organic Chemistry, Faculty of Chemistry, University of Sevilla, C/ Profesor García González 1, 41012, Sevilla, Spain.
| | - Aday González-Bakker
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González", Universidad de la Laguna, C/ Astrofísico Francisco Sánchez 2, 38206, La Laguna, Spain
| | - Adrián Puerta
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González", Universidad de la Laguna, C/ Astrofísico Francisco Sánchez 2, 38206, La Laguna, Spain
| | - José M Padrón
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González", Universidad de la Laguna, C/ Astrofísico Francisco Sánchez 2, 38206, La Laguna, Spain.
| | - Francisco Martín-Loro
- Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, Av/ Ana de Viya 21, 11009, Cádiz, Spain
| | - Ana I Arroba
- Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, Av/ Ana de Viya 21, 11009, Cádiz, Spain; Department of Biomedicine, Biotechnology and Public Health Immunology Area, University of Cádiz Pl. Falla, 9, 11003, Cádiz, Spain
| | - José Manuel García Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, C/ Américo Vespucio 49, Isla de la Cartuja, 41092, Sevilla, Spain
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Sevilla, C/ Profesor García González 1, 41012, Sevilla, Spain
| |
Collapse
|
5
|
Abstract
Fluorinated carbohydrates have found many applications in the glycosciences. Typically, these contain fluorination at a single position. There are not many applications involving polyfluorinated carbohydrates, here defined as monosaccharides in which more than one carbon has at least one fluorine substituent directly attached to it, with the notable exception of their use as mechanism-based inhibitors. The increasing attention to carbohydrate physical properties, especially around lipophilicity, has resulted in a surge of interest for this class of compounds. This review covers the considerable body of work toward the synthesis of polyfluorinated hexoses, pentoses, ketosugars, and aminosugars including sialic acids and nucleosides. An overview of the current state of the art of their glycosidation is also provided.
Collapse
Affiliation(s)
- Kler Huonnic
- School
of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.
| | - Bruno Linclau
- School
of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.
- Department
of Organic and Macromolecular Chemistry, Ghent University, Campus Sterre, Krijgslaan 281-S4, Ghent, 9000, Belgium
| |
Collapse
|
6
|
Bilska-Markowska M, Jankowski W, Hoffmann M, Kaźmierczak M. Design and Synthesis of New α-hydroxy β-fluoro/β-trifluoromethyl and Unsaturated Phosphonates from Carbohydrate-Derived Building Blocks via Pudovik and Horner–Wadsworth–Emmons Reactions. Molecules 2022; 27:molecules27175404. [PMID: 36080169 PMCID: PMC9457578 DOI: 10.3390/molecules27175404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Herein, we present the application of fluorinated carbohydrate-derived building blocks for α-hydroxy β-fluoro/β-trifluoromethyl and unsaturated phosphonates synthesis. Pudovik and Horner–Wadsworth–Emmons reactions were applied to achieve this goal. The proposed pathway of the key reactions is supported by the experimental results, as well as quantum chemical calculations. The structure of the products was established by spectroscopic (1D, 2D NMR) and spectrometric (MS) techniques. Based on our data received, we claim that the progress of the Pudovik and HWE reactions is significantly influenced by the acidic protons present in the molecules as assessed by pKa values of the reagent.
Collapse
Affiliation(s)
- Monika Bilska-Markowska
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Wojciech Jankowski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Marcin Hoffmann
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Marcin Kaźmierczak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
- Centre for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
- Correspondence:
| |
Collapse
|
7
|
Intermaggio NE, Millet A, Davis DL, MacMillan DWC. Deoxytrifluoromethylation of Alcohols. J Am Chem Soc 2022; 144:11961-11968. [PMID: 35786873 DOI: 10.1021/jacs.2c04807] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Deoxy-functionalization of alcohols represents a class of reactions that has had a profound impact on modern medicine. In particular, deoxyfluorination is commonly employed as a means to incorporate high-value fluorine atoms into drug-like molecules. Recently, the trifluoromethyl (CF3) group has garnered attention from medicinal chemists due to its ability to markedly improve the pharmaceutical properties of small-molecule drug candidates. To date, however, there remains no general means to accomplish the analogous deoxygenative trifluoromethylation of alcohols. We report herein a copper metallaphotoredox-mediated direct deoxytrifluoromethylation, wherein alcohol substrates are activated in situ by benzoxazolium salts for C(sp3)-CF3 bond formation.
Collapse
Affiliation(s)
- Nicholas E Intermaggio
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Agustin Millet
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Dali L Davis
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - David W C MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
8
|
Bilska‐Markowska M, Patyk‐Kaźmierczak E, Lusina A. Synthesis of Fluorinated Amides Starting from Carbohydrates Based on the Claisen Rearrangement. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Monika Bilska‐Markowska
- Faculty of Chemistry Adam Mickiewicz University in Poznań Uniwersytetu Poznańskiego 8 61-614 Poznań Poland
| | - Ewa Patyk‐Kaźmierczak
- Faculty of Chemistry Adam Mickiewicz University in Poznań Uniwersytetu Poznańskiego 8 61-614 Poznań Poland
| | - Aleksandra Lusina
- Faculty of Chemistry Adam Mickiewicz University in Poznań Uniwersytetu Poznańskiego 8 61-614 Poznań Poland
| |
Collapse
|
9
|
Jakubec M, Císařová I, Karban J, Sýkora J. The Effect of Deoxyfluorination on Intermolecular Interactions in the Crystal Structures of 1,6-Anhydro-2,3-epimino-hexopyranoses. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27010278. [PMID: 35011510 PMCID: PMC8746508 DOI: 10.3390/molecules27010278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 12/04/2022]
Abstract
The effect of substitution on intermolecular interactions was investigated in a series of 1,6-anhydro-2,3-epimino-hexopyranoses. The study focused on the qualitative evaluation of intermolecular interactions using DFT calculations and the comparison of molecular arrangements in the crystal lattice. Altogether, ten crystal structures were compared, including two structures of C4-deoxygenated, four C4-deoxyfluorinated and four parent epimino pyranoses. It was found that the substitution of the original hydroxy group by hydrogen or fluorine leads to a weakening of the intermolecular interaction by approximately 4 kcal/mol. The strength of the intermolecular interactions was found to be in the following descending order: hydrogen bonding of hydroxy groups, hydrogen bonding of the amino group, interactions with fluorine and weak electrostatic interactions. The intermolecular interactions that involved fluorine atom were rather weak; however, they were often supported by other weak interactions. The fluorine atom was not able to substitute the role of the hydroxy group in molecular packing and the fluorine atoms interacted only weakly with the hydrogen atoms located at electropositive regions of the carbohydrate molecules. However, the fluorine interaction was not restricted to a single molecule but was spread over at least three other molecules. This feature is a base for similar molecule arrangements in the structures of related compounds, as we found for the C4-Fax and C4-Feq epimines presented here.
Collapse
Affiliation(s)
- Martin Jakubec
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, v. v. i., Rozvojová 135, 165 02 Prague, Czech Republic; (M.J.); (J.K.)
| | - Ivana Císařová
- Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 40 Prague, Czech Republic;
| | - Jindřich Karban
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, v. v. i., Rozvojová 135, 165 02 Prague, Czech Republic; (M.J.); (J.K.)
| | - Jan Sýkora
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, v. v. i., Rozvojová 135, 165 02 Prague, Czech Republic; (M.J.); (J.K.)
- Correspondence:
| |
Collapse
|
10
|
Kaźmierczak M, Bilska‐Markowska M. Diethylaminosulfur Trifluoride (DAST) Mediated Transformations Leading to Valuable Building Blocks and Bioactive Compounds. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Marcin Kaźmierczak
- Faculty of Chemistry Adam Mickiewicz University in Poznań Uniwersytetu Poznańskiego 8 61-614 Poznań Poland
- Centre for Advanced Technologies Adam Mickiewicz University in Poznań Uniwersytetu Poznańskiego 10 61-614 Poznań Poland
| | - Monika Bilska‐Markowska
- Faculty of Chemistry Adam Mickiewicz University in Poznań Uniwersytetu Poznańskiego 8 61-614 Poznań Poland
| |
Collapse
|
11
|
Council CE, Kilpin KJ, Gusthart JS, Allman SA, Linclau B, Lee SS. Enzymatic glycosylation involving fluorinated carbohydrates. Org Biomol Chem 2021; 18:3423-3451. [PMID: 32319497 DOI: 10.1039/d0ob00436g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Fluorinated carbohydrates, where one (or more) fluorine atom(s) have been introduced into a carbohydrate structure, typically through deoxyfluorination chemistry, have a wide range of applications in the glycosciences. Fluorinated derivatives of galactose, glucose, N-acetylgalactosamine, N-acetylglucosamine, talose, fucose and sialic acid have been employed as either donor or acceptor substrates in glycosylation reactions. Fluorinated donors can be synthesised by synthetic methods or produced enzymatically from chemically fluorinated sugars. The latter process is mediated by enzymes such as kinases, phosphorylases and nucleotidyltransferases. Fluorinated donors produced by either method can subsequently be used in glycosylation reactions mediated by glycosyltransferases, or phosphorylases yielding fluorinated oligosaccharide or glycoconjugate products. Fluorinated acceptor substrates are typically synthesised chemically. Glycosyltransferases are most commonly used in conjunction with natural donors to further elaborate fluorinated acceptor substrates. Glycoside hydrolases are used with either fluorinated donors or acceptors. The activity of enzymes towards fluorinated sugars is often lower than towards the natural sugar substrates irrespective of donor or acceptor. This may be in part attributed to elimination of the contribution of the hydroxyl group to the binding of the substrate to enzymes. However, in many cases, enzymes still maintain a significant activity, and reactions may be optimised where necessary, enabling enzymes to be used more successfully in the production of fluorinated carbohydrates. This review describes the current state of the art regarding chemoenzymatic production of fluorinated carbohydrates, focusing specifically on examples of the enzymatic production of activated fluorinated donors and enzymatic glycosylation involving fluorinated sugars as either glycosyl donors or acceptors.
Collapse
Affiliation(s)
- Claire E Council
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK.
| | | | | | | | | | | |
Collapse
|
12
|
Uhrig ML, Mora Flores EW, Postigo A. Approaches to the Synthesis of Perfluoroalkyl-Modified Carbohydrates and Derivatives: Thiosugars, Iminosugars, and Tetrahydro(thio)pyrans. Chemistry 2021; 27:7813-7825. [PMID: 33462910 DOI: 10.1002/chem.202005229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/06/2021] [Indexed: 12/11/2022]
Abstract
Fluoroalkyl-substituted carbohydrates play relevant roles in diverse areas such as supramolecular chemistry, glycoconjugation, liquid crystals, and surfactants, with direct applications as wetting, antifreeze, and coating agents. In light of these promising applications, new methodologies for the late-stage incorporation of fluoroalkyl RF groups into carbohydrates and derivatives are herein presented as they are relevant to the synthetic carbohydrate community. Previously reviewed protocols for the installation of RF groups onto carbohydrates and derivatives will be succinctly summarized in the light of the new achievements. Fluoroalkyl-substituted iminosugars, on the other hand, are also interesting glycomimetic derivatives with prominent roles as glycosidases and glycosyltransferases inhibitors, as has recently been demonstrated. Also, they positively contribute to the study of sugar-protein interactions and enzyme mechanisms. New advances in the syntheses of fluoroalkyl-substituted iminosugars will also be presented here.
Collapse
Affiliation(s)
- María Laura Uhrig
- Departamento de Química Orgánica, Universidad de Buenos Aires, Facultad de Ciencias ExactasyNaturales, Pabellón 2, Ciudad Universitaria, C1428EG, Buenos Aires, Argentina.,Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), CONICET- Universidad de Buenos Aires, CP1428, Buenos Aires, Argentina
| | - Erwin W Mora Flores
- Departamento de Química Orgánica, Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Junín 954, CP1113-, Buenos Aires, Argentina
| | - Al Postigo
- Departamento de Química Orgánica, Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Junín 954, CP1113-, Buenos Aires, Argentina
| |
Collapse
|
13
|
Mondal R, Agbaria M, Nairoukh Z. Fluorinated Rings: Conformation and Application. Chemistry 2021; 27:7193-7213. [PMID: 33512034 DOI: 10.1002/chem.202005425] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Indexed: 12/16/2022]
Abstract
The introduction of fluorine atoms into molecules and materials across many fields of academic and industrial research is now commonplace, owing to their unique properties. A particularly interesting feature is the impact of fluorine substitution on the relative orientation of a C-F bond when incorporated into organic molecules. In this Review, we will be discussing the conformational behavior of fluorinated aliphatic carbo- and heterocyclic systems. The conformational preference of each system is associated with various interactions introduced by fluorine substitution such as charge-dipole, dipole-dipole, and hyperconjugative interactions. The contribution of each interaction on the stabilization of the fluorinated alicyclic system, which manifests itself in low conformations, will be discussed in detail. The novelty of this feature will be demonstrated by presenting the most recent applications.
Collapse
Affiliation(s)
- Rajarshi Mondal
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| | - Mohamed Agbaria
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| | - Zackaria Nairoukh
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| |
Collapse
|
14
|
Linclau B, Ardá A, Reichardt NC, Sollogoub M, Unione L, Vincent SP, Jiménez-Barbero J. Fluorinated carbohydrates as chemical probes for molecular recognition studies. Current status and perspectives. Chem Soc Rev 2021; 49:3863-3888. [PMID: 32520059 DOI: 10.1039/c9cs00099b] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review provides an extensive summary of the effects of carbohydrate fluorination with regard to changes in physical, chemical and biological properties with respect to regular saccharides. The specific structural, conformational, stability, reactivity and interaction features of fluorinated sugars are described, as well as their applications as probes and in chemical biology.
Collapse
Affiliation(s)
- Bruno Linclau
- School of Chemistry, University of Southampton, Highfield, Southampton SO171BJ, UK
| | - Ana Ardá
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain.
| | | | - Matthieu Sollogoub
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 place Jussieu, 75005 Paris, France
| | - Luca Unione
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Stéphane P Vincent
- Department of Chemistry, Laboratory of Bio-organic Chemistry, University of Namur (UNamur), B-5000 Namur, Belgium
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain. and Ikerbasque, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain and Department of Organic Chemistry II, Faculty of Science and Technology, UPV/EHU, 48940 Leioa, Spain
| |
Collapse
|
15
|
Hevey R. The Role of Fluorine in Glycomimetic Drug Design. Chemistry 2020; 27:2240-2253. [DOI: 10.1002/chem.202003135] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Rachel Hevey
- Department of Pharmaceutical Sciences University of Basel, Pharmazentrum Klingelbergstrasse 50 4056 Basel Switzerland
| |
Collapse
|
16
|
Meng X, Lian X, Li X, Ya Q, Li T, Zhang Y, Yang Y, Zhang Y. Synthesis of 2'-paclitaxel 2-deoxy-2-fluoro-glucopyranosyl carbonate for specific targeted delivery to cancer cells. Carbohydr Res 2020; 493:108034. [PMID: 32485481 DOI: 10.1016/j.carres.2020.108034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/28/2020] [Accepted: 05/14/2020] [Indexed: 12/17/2022]
Abstract
A novel 2-fluorodeoxyglucose conjugated derivative of paclitaxel was efficiently synthesized using a linker between 2'-OH of paclitaxel and C1-hydroxyl group of 2-fluorodeoxyglucose. In preparation of the prodrug, allyl carbonates were selected as the protective group and the efficient one-step removal of allyloxycarbonyl groups at the end of the synthesis using palladium chemistry gave the target molecule in good yield. The prodrug not only improved the pharmaceutical properties of paclitaxel, such as solubility and stability, but also demonstrated enhanced cytotoxicity and selectivity for cancer cells and less toxicity toward normal HUVEC cells.
Collapse
Affiliation(s)
- Xin Meng
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin, 300457, PR China.
| | - Xujing Lian
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin, 300457, PR China
| | - Xiao Li
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin, 300457, PR China
| | - Qiang Ya
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin, 300457, PR China
| | - Tingshen Li
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin, 300457, PR China
| | - Yongmin Zhang
- Université Pierre et Marie Curie-Paris 6, Institut Parisien de Chimie Moléculaire, UMR, CNRS, 8232, 4 Place Jussieu, 75005, Paris, France
| | - Yang Yang
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin, 300457, PR China.
| | - Yan Zhang
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan, 250012, Shandong Province, PR China
| |
Collapse
|
17
|
Synthesis and Therapeutic Applications of Iminosugars in Cystic Fibrosis. Int J Mol Sci 2020; 21:ijms21093353. [PMID: 32397443 PMCID: PMC7247015 DOI: 10.3390/ijms21093353] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
Iminosugars are sugar analogues endowed with a high pharmacological potential. The wide range of biological activities exhibited by these glycomimetics associated with their excellent drug profile make them attractive therapeutic candidates for several medical interventions. The ability of iminosugars to act as inhibitors or enhancers of carbohydrate-processing enzymes suggests their potential use as therapeutics for the treatment of cystic fibrosis (CF). Herein we review the most relevant advances in the field, paying attention to both the chemical synthesis of the iminosugars and their biological evaluations, resulting from in vitro and in vivo assays. Starting from the example of the marketed drug NBDNJ (N-butyl deoxynojirimycin), a variety of iminosugars have exhibited the capacity to rescue the trafficking of F508del-CFTR (deletion of F508 residue in the CF transmembrane conductance regulator), either alone or in combination with other correctors. Interesting results have also been obtained when iminosugars were considered as anti-inflammatory agents in CF lung disease. The data herein reported demonstrate that iminosugars hold considerable potential to be applied for both therapeutic purposes.
Collapse
|