1
|
Inflammation in Pulmonary Hypertension and Edema Induced by Hypobaric Hypoxia Exposure. Int J Mol Sci 2022; 23:ijms232012656. [PMID: 36293512 PMCID: PMC9604159 DOI: 10.3390/ijms232012656] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 11/06/2022] Open
Abstract
Exposure to high altitudes generates a decrease in the partial pressure of oxygen, triggering a hypobaric hypoxic condition. This condition produces pathophysiologic alterations in an organism. In the lung, one of the principal responses to hypoxia is the development of hypoxic pulmonary vasoconstriction (HPV), which improves gas exchange. However, when HPV is exacerbated, it induces high-altitude pulmonary hypertension (HAPH). Another important illness in hypobaric hypoxia is high-altitude pulmonary edema (HAPE), which occurs under acute exposure. Several studies have shown that inflammatory processes are activated in high-altitude illnesses, highlighting the importance of the crosstalk between hypoxia and inflammation. The aim of this review is to determine the inflammatory pathways involved in hypobaric hypoxia, to investigate the key role of inflammation in lung pathologies, such as HAPH and HAPE, and to summarize different anti-inflammatory treatment approaches for these high-altitude illnesses. In conclusion, both HAPE and HAPH show an increase in inflammatory cell infiltration (macrophages and neutrophils), cytokine levels (IL-6, TNF-α and IL-1β), chemokine levels (MCP-1), and cell adhesion molecule levels (ICAM-1 and VCAM-1), and anti-inflammatory treatments (decreasing all inflammatory components mentioned above) seem to be promising mitigation strategies for treating lung pathologies associated with high-altitude exposure.
Collapse
|
2
|
Perinatal Brain Injury and Inflammation: Lessons from Experimental Murine Models. Cells 2020; 9:cells9122640. [PMID: 33302543 PMCID: PMC7764185 DOI: 10.3390/cells9122640] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/19/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
Abstract
Perinatal brain injury or neonatal encephalopathy (NE) is a state of disturbed neurological function in neonates, caused by a number of different aetiologies. The most prominent cause of NE is hypoxic ischaemic encephalopathy, which can often induce seizures. NE and neonatal seizures are both associated with poor neurological outcomes, resulting in conditions such as cerebral palsy, epilepsy, autism, schizophrenia and intellectual disability. The current treatment strategies for NE and neonatal seizures have suboptimal success in effectively treating neonates. Therapeutic hypothermia is currently used to treat NE and has been shown to reduce morbidity and has neuroprotective effects. However, its success varies between developed and developing countries, most likely as a result of lack of sufficient resources. The first-line pharmacological treatment for NE is phenobarbital, followed by phenytoin, fosphenytoin and lidocaine as second-line treatments. While these drugs are mostly effective at halting seizure activity, they are associated with long-lasting adverse neurological effects on development. Over the last years, inflammation has been recognized as a trigger of NE and seizures, and evidence has indicated that this inflammation plays a role in the long-term neuronal damage experienced by survivors. Researchers are therefore investigating the possible neuroprotective effects that could be achieved by using anti-inflammatory drugs in the treatment of NE. In this review we will highlight the current knowledge of the inflammatory response after perinatal brain injury and what we can learn from animal models.
Collapse
|
3
|
Jing L, Wu N, He L, Shao J, Ma H. Establishment of an experimental rat model of high altitude cerebral edema by hypobaric hypoxia combined with temperature fluctuation. Brain Res Bull 2020; 165:253-262. [PMID: 33141074 DOI: 10.1016/j.brainresbull.2020.10.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022]
Abstract
High altitude cerebral edema (HACE) is a kind of life threat disease encountered at high altitude, but the precise pathogenesis of it is far more understood. Hypobaic hypoxia (HH) and cold are conditions characteristic of high altitude environment. HH is always considered as the central causative factor for the development of HACE, but the effect of cold stress on HACE has been rarely investigated. The purpose of this study was to investigate the potential role of cold stress in the development of HACE and establish a stable experimental animal model. Male SPF Wistar rats were randomly divided into five groups for this experiment, control group (altitude, 1400 m, temperature, 25 ℃), NC + 2 ℃ group (altitude, 1400 m, temperature, 2 ℃), HH group (altitude, 6000 m, temperature, 25 ℃), HH+2 ℃ group (altitude, 6000 m, temperature, 2 ℃) and HH + 12/2 ℃ (altitude, 6000 m, temperature, 12 ℃/2 ℃ light/dark cycle). After exposure for 72 h, the blood and brain tissues were collected. Brain water content (BWC) and Evans Blue dye extravasation were used to assess the brain edema and blood-brain barrier (BBB) permeability, respectively. The levels of pro-inflammatory cytokines in serum were assessed via enzyme-linked immunosorbent assay. Oxidative stress markers and ATPase activity were determined using commercial kits. Western blotting was used to detect the expression of related proteins. Compared to control, HH+2 ℃ could significantly increase the BWC and BBB permeability, and these changes were further exacerbated by HH + 12/2 ℃. Furthermore, HH+2 ℃ and HH + 12/2 ℃ markedly increased the levels of H2O2 and MDA, restrained SOD and GSH levels and decreased Na+/K+-ATPase activitie compared with the control group. In addition, HH+2 ℃ and HH + 12/2 ℃ enhanced the levels of pro-inflammatory cytokines IL-1β, TNF-α and IL-6 in serum and significantly increased the expression of VEGF in brain compared with the control group, but only HH + 12/2 ℃ could increase the expression of AQP4. However, compared with control group, no significant differences in these parameters were observed in HH and NC+2 ℃groups. These results demonstrated that HH or cold stress alone did not successfully induce brain damage, while HH+2 ℃ could induce the onset of HACE via provoking injury caused by HH. HH + 12/2 ℃ was more obvious and efficient. Collectively, we firstly suggest that cold stress may promote the formation of HACE by aggravating the brain injury induced by HH exposure and supply an effective and reliable experimental rat model of HACE via HH combined with temperature fluctuation.
Collapse
Affiliation(s)
- Linlin Jing
- Department of Pharmacy, The 940th Hospital of Joint Logistics Support Force, Lanzhou, Gansu, 730050, People's Republic of China
| | - Ningzi Wu
- Department of Pharmacy, The 940th Hospital of Joint Logistics Support Force, Lanzhou, Gansu, 730050, People's Republic of China
| | - Lei He
- Department of Pharmacy, The 940th Hospital of Joint Logistics Support Force, Lanzhou, Gansu, 730050, People's Republic of China
| | - Jin Shao
- Department of Pharmacy, The 940th Hospital of Joint Logistics Support Force, Lanzhou, Gansu, 730050, People's Republic of China
| | - Huiping Ma
- Department of Pharmacy, The 940th Hospital of Joint Logistics Support Force, Lanzhou, Gansu, 730050, People's Republic of China.
| |
Collapse
|
4
|
Lian T, Li D, Tan X, Che T, Xu Z, Fan X, Wu N, Zhang L, Gaur U, Sun B, Yang M. Genetic diversity and natural selection in wild fruit flies revealed by whole-genome resequencing. Genomics 2017; 110:304-309. [PMID: 29247769 DOI: 10.1016/j.ygeno.2017.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 11/20/2017] [Accepted: 12/05/2017] [Indexed: 12/30/2022]
Abstract
We characterized 26 wild fruit flies comparative population genomics from six different altitude and latitude locations by whole genome resequencing. Genetic diversity was relatively higher in Ganzi and Chongqing populations. We also found 13 genes showing selection signature between different altitude flies and variants related to hypoxia and temperature stimulus, were preferentially selected during the flies evolution. One of the most striking selective sweeps found in all high altitude flies occurred in the region harboring Hsp70Aa and Hsp70Ab on chromosome 3R. Interestingly, these two genes are involved in GO terms including response to hypoxia, unfolded protein, temperature stimulus, heat, oxygen levels. Mutation in HPH gene, a candidate gene in the hypoxia inducible factor pathway, might contributes to hypoxic high-altitude adaptation. Intriguingly, some of the selected genes, primarily utilized in humans, were involved in the response to hypoxia, which could imply a conserved molecular mechanisms underlying high-altitude adaptation between insects and humans.
Collapse
Affiliation(s)
- Ting Lian
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Diyan Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xinxin Tan
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tiandong Che
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhongxian Xu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaolan Fan
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Nan Wu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Long Zhang
- Institute of Ecology, China West Normal University, Nanchong 637009, China
| | - Uma Gaur
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Boyuan Sun
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingyao Yang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
5
|
Millar LJ, Shi L, Hoerder-Suabedissen A, Molnár Z. Neonatal Hypoxia Ischaemia: Mechanisms, Models, and Therapeutic Challenges. Front Cell Neurosci 2017; 11:78. [PMID: 28533743 PMCID: PMC5420571 DOI: 10.3389/fncel.2017.00078] [Citation(s) in RCA: 231] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/07/2017] [Indexed: 12/11/2022] Open
Abstract
Neonatal hypoxia-ischaemia (HI) is the most common cause of death and disability in human neonates, and is often associated with persistent motor, sensory, and cognitive impairment. Improved intensive care technology has increased survival without preventing neurological disorder, increasing morbidity throughout the adult population. Early preventative or neuroprotective interventions have the potential to rescue brain development in neonates, yet only one therapeutic intervention is currently licensed for use in developed countries. Recent investigations of the transient cortical layer known as subplate, especially regarding subplate's secretory role, opens up a novel set of potential molecular modulators of neonatal HI injury. This review examines the biological mechanisms of human neonatal HI, discusses evidence for the relevance of subplate-secreted molecules to this condition, and evaluates available animal models. Neuroserpin, a neuronally released neuroprotective factor, is discussed as a case study for developing new potential pharmacological interventions for use post-ischaemic injury.
Collapse
Affiliation(s)
- Lancelot J. Millar
- Molnár Group, Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
| | - Lei Shi
- Molnár Group, Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan UniversityGuangzhou, China
| | | | - Zoltán Molnár
- Molnár Group, Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
| |
Collapse
|
6
|
Wang C, Wang R, Xie H, Sun Y, Tao R, Liu W, Li W, Lu H, Jia Z. Effect of acetazolamide on cytokines in rats exposed to high altitude. Cytokine 2016; 83:110-117. [PMID: 27104804 DOI: 10.1016/j.cyto.2016.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 03/19/2016] [Accepted: 04/03/2016] [Indexed: 02/08/2023]
Abstract
Acute mountain sickness (AMS) is a dangerous hypoxic illness that can affect humans who rapidly reach a high altitude above 2500m. In the study, we investigated the changes of cytokines induced by plateau, and the acetazolamide (ACZ) influenced the cytokines in rats exposed to high altitude. Wistar rats were divided into low altitude (Control), high altitude (HA), and high altitude+ACZ (22.33mg/kg, Bid) (HA+ACZ) group. The rats were acute exposed to high altitude at 4300m for 3days. The HA+ACZ group were given ACZ by intragastric administration. The placebo was equal volume saline. The results showed that hypoxia caused the heart, liver and lung damage, compared with the control group. Supplementation with ACZ significantly alleviated hypoxia-caused damage to the main organs. Compared with the HA group, the biochemical and blood gas indicators of the HA+ACZ group showed no difference, while some cytokines have significantly changed, such as activin A, intercellular adhesion molecule-1 (ICAM-1, CD54), interleukin-1α,2 (IL-1α,2), l-selectin, monocyte chemotactic factor (MCP-1), CC chemokines (MIP-3α) and tissue inhibitor of matrix metalloproteinase 1 (TIMP-1). Then, the significant difference pro-inflammatory cytokines in protein array were chosen for further research. The protein and mRNA content of pro-inflammatory cytokines MCP-1, interleukin-1β (IL-1β), tumor necrosis factor (TNF-α), interferon-γ (IFN-γ) in rat lung were detected. The results demonstrated that the high altitude affected the body's physiological and biochemical parameters, but, ACZ did not change those parameters of the hypoxia rats. This study found that ACZ could decrease the content of pro-inflammatory cytokines, such as MCP-1, IL-1β, TNF-α and IFN-γ in rat lungs, and, the lung injury in the HA+ACZ group reduced. The mechanism that ACZ protected hypoxia rats might be related to changes in cytokine content. The reducing of the pro-inflammatory cytokines in rat lung might be other reason to explain ACZ against the acute mountain sickness.
Collapse
Affiliation(s)
- Chang Wang
- PLA Key Laboratory of the Plateau of the Environmental Damage Control, Lanzhou General Hospital, Lanzhou Command, Lanzhou 730050, China; School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Rong Wang
- PLA Key Laboratory of the Plateau of the Environmental Damage Control, Lanzhou General Hospital, Lanzhou Command, Lanzhou 730050, China; School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| | - Hua Xie
- PLA Key Laboratory of the Plateau of the Environmental Damage Control, Lanzhou General Hospital, Lanzhou Command, Lanzhou 730050, China
| | - Yuhuan Sun
- PLA Key Laboratory of the Plateau of the Environmental Damage Control, Lanzhou General Hospital, Lanzhou Command, Lanzhou 730050, China; School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Rui Tao
- PLA Key Laboratory of the Plateau of the Environmental Damage Control, Lanzhou General Hospital, Lanzhou Command, Lanzhou 730050, China; School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Wenqing Liu
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou 730030, China
| | - Wenbin Li
- PLA Key Laboratory of the Plateau of the Environmental Damage Control, Lanzhou General Hospital, Lanzhou Command, Lanzhou 730050, China; School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Hui Lu
- PLA Key Laboratory of the Plateau of the Environmental Damage Control, Lanzhou General Hospital, Lanzhou Command, Lanzhou 730050, China; School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhengping Jia
- PLA Key Laboratory of the Plateau of the Environmental Damage Control, Lanzhou General Hospital, Lanzhou Command, Lanzhou 730050, China; School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|