1
|
Xie N, Wang F, Chen D, Zhou J, Xu J, Qu F. Immune dysfunction mediated by the competitive endogenous RNA network in fetal side placental tissue of polycystic ovary syndrome. PLoS One 2024; 19:e0300461. [PMID: 38512862 PMCID: PMC10956758 DOI: 10.1371/journal.pone.0300461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/27/2024] [Indexed: 03/23/2024] Open
Abstract
Polycystic ovary syndrome (PCOS), a common endocrine and metabolic disorder affecting women in their reproductive years. Emerging evidence suggests that the maternal-fetal immune system is crucial for proper pregnancy. However, whether immune function is altered at the end of pregnancy in PCOS women and the underlying molecular mechanisms is currently unexplored. Herein, the basic maternal immune system was investigated (n = 136 in the control group; n = 103 in the PCOS group), and whole-transcriptome sequencing was carried out to quantify the mRNAs, miRNAs, and lncRNAs expression levels in fetal side placental tissue of women with PCOS. GO, KEGG, and GSEA analysis were employed for functional enrichment analysis. The process of identifying hub genes was conducted utilizing the protein-protein interaction network. CIBERSORT and Connectivity Map were deployed to determine immune cell infiltration and predict potential drugs, respectively. A network of mRNA-miRNA-lncRNA was constructed and then validated by qRT-PCR. First, red blood cell count, neutrophil count, lymphocyte count, hypersensitive C-reactive protein, and procalcitonin were significantly elevated, while placental growth factor was hindered in PCOS women. We identified 308 DEmRNAs, 77 DEmiRNAs, and 332 DElncRNAs in PCOS samples. Functional enrichment analysis revealed that there were significant changes observed in terms of the immune system, especially the chemokine pathway. Eight genes, including FOS, JUN, EGR1, CXCL10, CXCR1, CXCR2, CXCL11, and CXCL8, were considered as hub genes. Furthermore, the degree of infiltration of neutrophils was dramatically decreased in PCOS tissues. In total, 57 ceRNA events were finally obtained, and immune-related ceRNA networks were validated. Some potential drug candidates, such as enalapril and RS-100329, could have a function in PCOS therapy. This study represents the inaugural attempt to evaluate the immune system at the end of pregnancy and placental ceRNA networks in PCOS, indicating alterations in the chemokine pathway, which may impact fetal and placental growth, and provides new therapy targets.
Collapse
Affiliation(s)
- Ningning Xie
- Department of Obstetrics and Gynecology, International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Fangfang Wang
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Danqing Chen
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jue Zhou
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Jian Xu
- Department of Obstetrics and Gynecology, International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Fan Qu
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Ullah A, Wang MJ, Wang YX, Shen B. CXC chemokines influence immune surveillance in immunological disorders: Polycystic ovary syndrome and endometriosis. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166704. [PMID: 37001703 DOI: 10.1016/j.bbadis.2023.166704] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/13/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023]
Abstract
Reproductive health is a worldwide challenge, but it is of particular significance to women during their reproductive age. Several female reproductive problems, including polycystic ovary syndrome (PCOS) and endometriosis, affect about 10 % of women and have a negative impact on their health, fertility, and quality of life. Small, chemotactic, and secreted cytokines are CXC chemokines. Both PCOS and endometriosis demonstrate dysregulation of CXC chemokines, which are critical to the development and progression of both diseases. Recent research has shown that both in humans and animals, CXC chemokines tend to cause inflammation. It has also been found that CXC chemokines are necessary for promoting angiogenesis and inflammatory responses. CXC chemokine overexpression is frequently associated with poor survival and prognosis. CXC chemokine levels in PCOS and endometriosis patients impact their circumstances significantly. Hence, CXC chemokines have significant potential as diagnostic and prognostic biomarkers and therapeutic targets. The molecular mechanisms through which CXC chemokines promote inflammation and the development of PCOS and endometriosis are currently unknown. This article will discuss the functions of CXC chemokines in the promotion, development, and therapy of PCOS and endometriosis, as well as future research directions. The current state and future prospects of CXC chemokine -based therapeutic strategies in the management of PCOS and endometriosis are also highlighted.
Collapse
|
3
|
Liu ZY, Sun MX, Hua MQ, Zhang HX, Mu GY, Zhou S, Wang Z, Xiang Q, Cui YM. New perspectives on the induction and acceleration of immune-associated thrombosis by PF4 and VWF. Front Immunol 2023; 14:1098665. [PMID: 36926331 PMCID: PMC10011124 DOI: 10.3389/fimmu.2023.1098665] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/14/2023] [Indexed: 03/04/2023] Open
Abstract
Platelet factor 4 (PF4), also known as chemokine (C-X-C motif) ligand 4 (CXCL4), is a specific protein synthesized from platelet α particles. The combination of PF4 and heparin to form antigenic complexes is an important mechanism in the pathogenesis of heparin-induced thrombocytopenia (HIT), but vaccine-induced immune thrombotic thrombocytopenia (VITT) related to the COVID-19 vaccine makes PF4 a research hotspot again. Similar to HIT, vaccines, bacteria, and other non-heparin exposure, PF4 can interact with negatively charged polyanions to form immune complexes and participate in thrombosis. These anions include cell surface mucopolysaccharides, platelet polyphosphates, DNA from endothelial cells, or von Willebrand factor (VWF). Among them, PF4-VWF, as a new immune complex, may induce and promote the formation of immune-associated thrombosis and is expected to become a new target and therapeutic direction. For both HIT and VITT, there is no effective and targeted treatment except discontinuation of suspected drugs. The research and development of targeted drugs based on the mechanism of action have become an unmet clinical need. Here, this study systematically reviewed the characteristics and pathophysiological mechanisms of PF4 and VWF, elaborated the potential mechanism of action of PF4-VWF complex in immune-associated thrombosis, summarized the current status of new drug research and development for PF4 and VWF, and discussed the possibility of this complex as a potential biomarker for early immune-associated thrombosis events. Moreover, the key points of basic research and clinical evaluation are put forward in the study.
Collapse
Affiliation(s)
- Zhi-Yan Liu
- Department of Pharmacy, Peking University First Hospital, Beijing, China.,Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China.,Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Min-Xue Sun
- Department of Pharmacy, Peking University First Hospital, Beijing, China.,School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Man-Qi Hua
- Department of Pharmacy, Peking University First Hospital, Beijing, China.,Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China.,Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Han-Xu Zhang
- Department of Pharmacy, Peking University First Hospital, Beijing, China.,Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China.,Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Guang-Yan Mu
- Department of Pharmacy, Peking University First Hospital, Beijing, China.,Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China.,Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Shuang Zhou
- Department of Pharmacy, Peking University First Hospital, Beijing, China.,Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China.,Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Zhe Wang
- Department of Pharmacy, Peking University First Hospital, Beijing, China.,Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China.,Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Qian Xiang
- Department of Pharmacy, Peking University First Hospital, Beijing, China.,Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China.,Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Yi-Min Cui
- Department of Pharmacy, Peking University First Hospital, Beijing, China.,Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China.,Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| |
Collapse
|
4
|
Ho CY, Chang YY, Lin YH, Chen MJ. Prior salpingectomy impairs the retrieved oocyte number in in vitro fertilization cycles of women under 35 years old without optimal ovarian reserve. PLoS One 2022; 17:e0268021. [PMID: 35507603 PMCID: PMC9067640 DOI: 10.1371/journal.pone.0268021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/20/2022] [Indexed: 11/19/2022] Open
Abstract
STUDY OBJECTIVE The impairment of the ovarian response in in vitro fertilization (IVF) cycles after salpingectomy remains contentious. Therefore, we investigated whether a history of salpingectomy affects the number of oocytes retrieved in women undergoing IVF in comparison with the number in women without underlying tubal disease. DESIGN Case-control study (Canadian Task Force Classification II-2). SETTING A tertiary hospital-affiliated fertility center. PATIENTS Fifty-four women aged <35 years with a history of salpingectomy and 59 age-matched women without tubal disease. INTERVENTIONS Gonadotropin-releasing hormone antagonist protocol for controlled ovarian stimulation and transvaginal oocyte retrieval. MEASUREMENTS AND MAIN RESULTS The antral follicle count (AFC), anti-Müllerian hormone (AMH) levels, and the number of retrieved oocytes were significantly lower in women with prior salpingectomy than in women without tubal disease. Day-3 follicle-stimulating hormone (FSH) levels, total gonadotropin dosage, and stimulation days did not significantly differ between the groups. The indications of salpingectomy (i.e., hydrosalpinx and ectopic pregnancy) did not differ significantly in terms of ovarian response or reserve among women with salpingectomy history. A history of salpingectomy and other factors related to ovarian response in IVF, such as age, AMH, AFC, day-3 FSH, and total gonadotropin dose, were significantly correlated with the number of oocytes retrieved by univariate regression analysis. In the multivariate-adjusted model after controlling all the above-mentioned variables, only AFC and AMH levels continued to exhibit significant associations with the number of retrieved oocytes. In a subgroup analysis, the negative impact of prior salpingectomy on the number of retrieved oocytes was especially significant in women with suboptimal ovarian reserves (defined as AMH < 4 ng/mL), regardless of the indication of salpingectomy or whether salpingectomy was bilateral or unilateral. CONCLUSION A negative effect on the number of retrieved oocytes in the subsequent IVF cycle after salpingectomy is more likely in women aged <35 years with suboptimal ovarian reserve. Nevertheless, postsurgical AMH and AFC levels still possess a more direct predictive value on ovarian response than the history of salpingectomy.
Collapse
Affiliation(s)
- Cheng-Yu Ho
- Department of Obstetrics and Gynecology, Shin Kong Wu Huo-Shih Memorial Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Yuan Chang
- Department of Obstetrics and Gynecology, College of Medicine and National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Hung Lin
- Department of Obstetrics and Gynecology, Shin Kong Wu Huo-Shih Memorial Hospital, Taipei, Taiwan
| | - Mei-Jou Chen
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Obstetrics and Gynecology, College of Medicine and National Taiwan University Hospital, Taipei, Taiwan
- Livia Shang-Yu Wan Chair Professor of Obstetrics and Gynecology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
5
|
Man L, Lustgarten Guahmich N, Kallinos E, Caiazza B, Khan M, Liu ZY, Patel R, Torres C, Pepin D, Yang HS, Bodine R, Zaninovic N, Schattman G, Rosenwaks Z, James D. Chronic superphysiologic AMH promotes premature luteinization of antral follicles in human ovarian xenografts. SCIENCE ADVANCES 2022; 8:eabi7315. [PMID: 35263130 PMCID: PMC8906729 DOI: 10.1126/sciadv.abi7315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 01/14/2022] [Indexed: 05/19/2023]
Abstract
Anti-Müllerian hormone (AMH) is produced by growing ovarian follicles and provides a diagnostic measure of reproductive reserve in women; however, the impact of AMH on folliculogenesis is poorly understood. We cotransplanted human ovarian cortex with control or AMH-expressing endothelial cells in immunocompromised mice and recovered antral follicles for purification and downstream single-cell RNA sequencing of granulosa and theca/stroma cell fractions. A total of 38 antral follicles were observed (19 control and 19 AMH) at long-term intervals (>10 weeks). In the context of exogenous AMH, follicles exhibited a decreased ratio of primordial to growing follicles and antral follicles of increased diameter. Transcriptomic analysis and immunolabeling revealed a marked increase in factors typically noted at more advanced stages of follicle maturation, with granulosa and theca/stroma cells also displaying molecular hallmarks of luteinization. These results suggest that superphysiologic AMH alone may contribute to ovulatory dysfunction by accelerating maturation and/or luteinization of antral-stage follicles.
Collapse
Affiliation(s)
- Limor Man
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Nicole Lustgarten Guahmich
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Eleni Kallinos
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Barbara Caiazza
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Monica Khan
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Zong-Ying Liu
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ritaben Patel
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Carmen Torres
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
| | - David Pepin
- Department of Surgery, Harvard Medical School, Boston, MA 02215, USA
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA 02214, USA
| | - He S. Yang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Richard Bodine
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Nikica Zaninovic
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
- Tri-Institutional Stem Cell Derivation Laboratory, Weill Cornell Medicine, New York, NY 10065, USA
| | - Glenn Schattman
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Zev Rosenwaks
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Daylon James
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
- Tri-Institutional Stem Cell Derivation Laboratory, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
6
|
Klenov V, Flor S, Ganesan S, Adur M, Eti N, Iqbal K, Soares MJ, Ludewig G, Ross JW, Robertson LW, Keating AF. The Aryl hydrocarbon receptor mediates reproductive toxicity of polychlorinated biphenyl congener 126 in rats. Toxicol Appl Pharmacol 2021; 426:115639. [PMID: 34256052 PMCID: PMC8500329 DOI: 10.1016/j.taap.2021.115639] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 12/16/2022]
Abstract
Polychlorinated biphenyls (PCBs) are endocrine disrupting chemicals with documented, though mechanistically ill-defined, reproductive toxicity. The toxicity of dioxin-like PCBs, such as PCB126, is mediated via the aryl hydrocarbon receptor (AHR) in non-ovarian tissues. The goal of this study was to examine the uterine and ovarian effects of PCB126 and test the hypothesis that the AHR is required for PCB126-induced reproductive toxicity. Female Holzman-Sprague Dawley wild type (n = 14; WT) and Ahr knock out (n = 11; AHR-/-) rats received a single intraperitoneal injection of either corn oil vehicle (5 ml/kg: WT_O and AHR-/-_O) or PCB126 (1.63 mg/kg in corn oil: WT_PCB and AHR-/-_PCB) at four weeks of age. The estrous cycle was synchronized and ovary and uterus were collected 28 days after exposure. In WT rats, PCB126 exposure reduced (P < 0.05) body and ovary weight, uterine gland number, uterine area, progesterone, 17β-estradiol and anti-Müllerian hormone level, secondary and antral follicle and corpora lutea number but follicle stimulating hormone level increased (P < 0.05). In AHR-/- rats, PCB126 exposure increased (P ≤ 0.05) circulating luteinizing hormone level. Ovarian or uterine mRNA abundance of biotransformation, and inflammation genes were altered (P < 0.05) in WT rats due to PCB126 exposure. In AHR-/- rats, the transcriptional effects of PCB126 were restricted to reductions (P < 0.05) in three inflammatory genes. These findings support a functional role for AHR in the female reproductive tract, illustrate AHR's requirement in PCB126-induced reprotoxicity, and highlight the potential risk of dioxin-like compounds on female reproduction.
Collapse
Affiliation(s)
- Violet Klenov
- Dept of Ob/Gyn, University of Iowa, United States of America
| | - Susanne Flor
- Interdisciplinary Graduate Program in Human Toxicology and Dept of Occupational and Environmental Health, University of Iowa, United States of America
| | - Shanthi Ganesan
- Dept of Animal Science, Iowa State University, United States of America
| | - Malavika Adur
- Dept of Animal Science, Iowa State University, United States of America
| | - Nazmin Eti
- Interdisciplinary Graduate Program in Human Toxicology and Dept of Occupational and Environmental Health, University of Iowa, United States of America
| | - Khursheed Iqbal
- Institute for Reproduction and Perinatal Research and Department of Pathology, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Michael J Soares
- Institute for Reproduction and Perinatal Research and Department of Pathology, University of Kansas Medical Center, Kansas City, KS, United States of America; Departments of Pediatrics and Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS, United States of America; Center for Perinatal Research, Children's Research Institute, Children's Mercy, Kansas City, MO, United States of America
| | - Gabriele Ludewig
- Interdisciplinary Graduate Program in Human Toxicology and Dept of Occupational and Environmental Health, University of Iowa, United States of America
| | - Jason W Ross
- Dept of Animal Science, Iowa State University, United States of America
| | - Larry W Robertson
- Interdisciplinary Graduate Program in Human Toxicology and Dept of Occupational and Environmental Health, University of Iowa, United States of America
| | - Aileen F Keating
- Dept of Animal Science, Iowa State University, United States of America.
| |
Collapse
|
7
|
Yu L, Liu M, Wang Z, Liu T, Liu S, Wang B, Pan B, Dong X, Guo W. Correlation between steroid levels in follicular fluid and hormone synthesis related substances in its exosomes and embryo quality in patients with polycystic ovary syndrome. Reprod Biol Endocrinol 2021; 19:74. [PMID: 34001150 PMCID: PMC8127216 DOI: 10.1186/s12958-021-00749-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/26/2021] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is an endocrine and metabolic disorder with various manifestations and complex etiology. Follicular fluid (FF) serves as the complex microenvironment for follicular development. However, the correlation between the concentration of steroid in FF and the pathogenesis of PCOS is still unclear. METHODS Twenty steroid levels in FF from ten patients with PCOS and ten women with male-factor infertility undergoing in vitro fertilization were tested by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in order to explore their possibly correlation with PCOS. Meanwhile, the mRNA levels of core enzymes in steroid synthesis pathway from exosomes of FF were also detected by qPCR. RESULTS The estriol (p < 0.01), estradiol (p < 0.05) and prenenolone (p < 0.01) levels in FF of PCOS group were significantly increased, compared to the normal group, and the progesterone levels (p < 0.05) were decreased in PCOS group. Increased mRNA levels of CYP11A, CYP19A and HSD17B2 of exosomes were accompanied by the hormonal changes in FF. Correlation analysis showed that mRNA levels of CYP11A and HSD17B2 were negatively correlated with percent of top-quality embryos and rate of embryos develop to blastocyst. CONCLUSION Our results suggest that increased levels of estrogen and pregnenolone in follicular fluid may affect follicle development in PCOS patients, and the mechanism is partially related to HSD17B1, CYP19A1 and CYP11A1 expression change in FF exosomes.
Collapse
Affiliation(s)
- Li Yu
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, No. 111 Yi Xue Yuan Road, Shanghai, 200032, PR China
| | - Miao Liu
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, No. 250 Xiao Mu Qiao Road, Shanghai, 200032, PR China
| | - Zhenxin Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, No. 111 Yi Xue Yuan Road, Shanghai, 200032, PR China
| | - Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No.725 South Wan Ping Road, Shanghai, 200031, PR China
| | - Suying Liu
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, No. 250 Xiao Mu Qiao Road, Shanghai, 200032, PR China
| | - Beili Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, No. 111 Yi Xue Yuan Road, Shanghai, 200032, PR China
| | - Baishen Pan
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, No. 111 Yi Xue Yuan Road, Shanghai, 200032, PR China
| | - Xi Dong
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, No. 250 Xiao Mu Qiao Road, Shanghai, 200032, PR China.
| | - Wei Guo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, No. 111 Yi Xue Yuan Road, Shanghai, 200032, PR China.
- Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, No. 668 Jin Hu Road, Xiamen, 361015, PR China.
| |
Collapse
|
8
|
Liu G, Liu S, Xing G, Wang F. lncRNA PVT1/MicroRNA-17-5p/PTEN Axis Regulates Secretion of E2 and P4, Proliferation, and Apoptosis of Ovarian Granulosa Cells in PCOS. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 20:205-216. [PMID: 32179451 PMCID: PMC7078124 DOI: 10.1016/j.omtn.2020.02.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/13/2019] [Accepted: 02/05/2020] [Indexed: 02/07/2023]
Abstract
Recently, the roles of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) were identified in polycystic ovary syndrome (PCOS). In the present study, we investigated the role of the lncRNA PVT1/miR-17-5p/PTEN axis in PCOS ovarian granulosa cells. Expression of PVT1, miR-17-5p and PTEN in PCOS ovarian granulosa cells and follicular fluid was detected, and homeostatic model assessment of insulin resistance (HOMA-IR) and the levels of fasting plasma glucose (FPG), fasting insulin (FINS), and sex hormones were assessed. Then, the proliferation, apoptosis, and colony formation ability of ovarian granulosa cells were evaluated. The binding relationship between PVT1 and miR-17-5p as well as the target relationship between miR-17-5p and PTEN were determined by bioinformatics analysis, luciferase activity assay, RNA-induced silencing complex assay, and RNA pull-down assay. The levels of sex hormone-binding globulin and follicle-stimulating hormone were abated and the levels of luteinizing hormone, testosterone, FINS, FPG, and HOMA-IR were increased in PCOS serum. PVT1 and PTEN were overexpressed and miR-17-5p was reduced in PCOS ovarian granulosa cells and follicular fluid. Overexpressed miR-17-5p and inhibited PVT1 could decelerate apoptosis while accelerating colony formation ability and proliferation of ovarian granulosa cells in PCOS. Moreover, overexpression of PVT1 and reduced miR-17-5p could reverse these results. There existed target relation among PVT1, miR-17-5p, and PTEN, and PVT1 could inhibit miR-17-5p, thereby elevating PTEN. Our study suggests that inhibited PVT1 and overexpressed miR-17-5p result in downregulation of PTEN and promotion of cell proliferation, as well as inhibition of apoptosis of ovarian granulosa cells in PCOS.
Collapse
Affiliation(s)
- Gelin Liu
- Center of Reproductive Medicine, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang 471000, Henan, P.R. China
| | - Shengxian Liu
- Center of Reproductive Medicine, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang 471000, Henan, P.R. China
| | - Guanlin Xing
- Center of Reproductive Medicine, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang 471000, Henan, P.R. China
| | - Fang Wang
- Center of Reproductive Medicine, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang 471000, Henan, P.R. China.
| |
Collapse
|
9
|
Thromboinflammatory changes in plasma proteome of pregnant women with PCOS detected by quantitative label-free proteomics. Sci Rep 2019; 9:17578. [PMID: 31772271 PMCID: PMC6879536 DOI: 10.1038/s41598-019-54067-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 10/25/2019] [Indexed: 12/14/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrinological disorder of fertile-aged women. Several adverse pregnancy outcomes and abnormalities of the placenta have been associated with PCOS. By using quantitative label-free proteomics we investigated whether changes in the plasma proteome of pregnant women with PCOS could elucidate the mechanisms behind the pathologies observed in PCOS pregnancies. A total of 169 proteins with ≥2 unique peptides were detected to be differentially expressed between women with PCOS (n = 7) and matched controls (n = 20) at term of pregnancy, out of which 35 were significant (p-value < 0.05). A pathway analysis revealed that networks related to humoral immune responses, inflammatory responses, cardiovascular disease and cellular growth and proliferation were affected by PCOS. Classification of cases and controls was carried out using principal component analysis, orthogonal projections on latent structure-discriminant analysis (OPLS-DA), hierarchical clustering, self-organising maps and ROC-curve analysis. The most significantly enriched proteins in PCOS were properdin and insulin-like growth factor II. In the dataset, properdin had the best predictive accuracy for PCOS (AUC = 1). Additionally, properdin abundances correlated with AMH levels in pregnant women.
Collapse
|
10
|
Tu YA, Lin SJ, Chen PL, Chou CH, Huang CC, Ho HN, Chen MJ. HSD3B1 gene polymorphism and female pattern hair loss in women with polycystic ovary syndrome. J Formos Med Assoc 2019; 118:1225-1231. [PMID: 31056381 DOI: 10.1016/j.jfma.2019.04.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/09/2019] [Accepted: 04/19/2019] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND/PURPOSE Genetic variant of HSD3B1 1245 is known to augment androgen production at peripheral tissue as skin. This study aimed to investigate whether women with polycystic ovary syndrome inheriting this variant exhibit specific androgenic phenotypes. METHODS A cross-sectional study of Taiwanese women with polycystic ovary syndrome, defined by Rotterdam criteria, at the reproductive endocrinology outpatient clinic in a university affiliated hospital. RESULTS The presence of female pattern hair loss in women with polycystic ovary syndrome was significantly associated with an increased body mass index, decreased sex hormone binding globulin and high density lipoprotein cholesterol levels, elevated triglyceride levels, and increased prevalence of hypertension. Using stepwise multivariate logistic regression analysis, body mass index, triglyceride and HSD3B1 1245 AC or CC genotype were significantly related to female pattern hair loss in women with polycystic ovary syndrome after considering other variables. Overweight women with polycystic ovary syndrome had significantly higher risk of female pattern hair loss than normal-weight women with polycystic ovary syndrome. The presence of female pattern hair loss was higher in overweight women with polycystic ovary syndrome who comprised HSD3B1 AC or CC genotype compared with wild type. CONCLUSION Carrying the HSD3B1 1245C allele and overweight are associated with the presence of female pattern hair loss in women with polycystic ovary syndrome.
Collapse
Affiliation(s)
- Yi-An Tu
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Sung-Jan Lin
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan; Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan; Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Lung Chen
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Hung Chou
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chu-Chun Huang
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Hong-Nerng Ho
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Mei-Jou Chen
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan; Livia Shangyu Wan Scholar, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|