1
|
Yildiz I, Gonullu E, Soysal A, Oner CN, Karabocuoglu M. The Epidemiology of Influenza Virus Infection and Group A Streptococcal Pharyngitis in Children Between 2011 and 2018 in an Outpatient Pediatric Clinic. Cureus 2023; 15:e33492. [PMID: 36756026 PMCID: PMC9902056 DOI: 10.7759/cureus.33492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Background The frequency of influenza virus infections and group A beta-hemolytic streptococcus (GAS) pharyngitis varies according to populations. We aimed to investigate the frequency of influenza virus and streptococcal pharyngitis infections in a pediatric outpatient cohort with many pediatric admissions in Istanbul. Materials and methods Children with upper respiratory tract infection (URTI) symptoms between 2011 and 2018 who underwent rapid diagnostic tests for influenza virus or streptococcal infection were evaluated retrospectively. Results The total number of pediatric cases admitted between 2011 and 2018 was 185,228, of which 119,928 were under five years old and 66,300 were children over five years old. The mean frequency of the influenza virus was 1,283 per 100,000 children, and the mean frequency of streptococcal pharyngitis was 1,764 per 100,000 children. The frequency of influenza has increased over the years. The frequency of streptococcal infection is higher in children over five years of age, and its frequency has decreased in this group. Conclusions The frequency of influenza virus infection and GAS pharyngitis varies according to years and seasons. Winter and spring were the seasons with the most frequent positive influenza virus and GAS pharyngitis. Although influenza frequency increased annually, this phenomenon was not observed in the frequency of GAS pharyngitis.
Collapse
Affiliation(s)
- Ismail Yildiz
- Pediatrics, Yalova University, Faculty of Medicine, Yalova, TUR
| | - Erdem Gonullu
- Pediatrics, Istanbul Health and Technology University, Faculty of Medicine, İstanbul, TUR
| | - Ahmet Soysal
- Pediatrics, Memorial Ataşehir Hospital, İstanbul, TUR
| | - Cevat Naci Oner
- Pediatrics, Istanbul Health and Technology University, Faculty of Medicine, İstanbul, TUR
| | | |
Collapse
|
2
|
Zhou N, Dai H, Zha W, Lv Y. The development trend of influenza in China from 2010 to 2019. Hum Vaccin Immunother 2022; 18:2071558. [PMID: 35714270 PMCID: PMC9359369 DOI: 10.1080/21645515.2022.2071558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this study, we quantify and evaluate the transmission capacity of different types of influenza, and evaluate the flu vaccination effect. Taking the influenza cases reported by the National Influenza Center of China from 2010 to 2019 as the research object (http://www.chinaivdc.cn/cnic), we established the SEIABR model to calculate the influenza infection rate and R0 for each year from 2010 to 2019, and calculate the influenza A and B influenza infection rates. We further added vaccination measures to the SEIABR model, and analysis the impact of different vaccination rates on the spread of influenza. We find that the range of β(infection rate) is 6.03×10−10 to 9.66×10−10, and the average is 7.95±1.27×10−10, the range of R0 is .98 to 1.47, and the average is 1.21. Simulation result suggest that vaccine coverage needed to reach 60%-80% to control the spread of influenza virus in China when the vaccine effectiveness was 20%-40%. When the vaccine effectiveness is 40%-60%, vaccine coverage needs to reach 40%-60% to control the spread of influenza virus in China. In China, the infection rate of influenza A is higher than influenza B, to better control the spread of the flu virus, we suggest that we also need to increase the number of people vaccinated or improve the efficiency of vaccines(the current vaccination coverage is probably less than 20%).
Collapse
Affiliation(s)
- Nan Zhou
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, Hunan, People's Republic of China
| | - Haoyun Dai
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, Hunan, People's Republic of China
| | - WenTing Zha
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, Hunan, People's Republic of China
| | - Yuan Lv
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
3
|
Yang JR, Kuo CY, Yu IL, Kung FY, Wu FT, Lin JS, Liu MT. Human infection with a reassortant swine-origin influenza A(H1N2)v virus in Taiwan, 2021. Virol J 2022; 19:63. [PMID: 35392932 PMCID: PMC8988477 DOI: 10.1186/s12985-022-01794-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/16/2022] [Indexed: 11/25/2022] Open
Abstract
Background Influenza A virus infections occur in different species, causing mild-to-severe symptoms that lead to a heavy disease burden. H1N1, H1N2 and H3N2 are major subtypes of swine influenza A viruses in pigs and occasionally infect humans. Methods A case infected by novel influenza virus was found through laboratory surveillance system for influenza viruses. Clinical specimens were tested by virus culture and/or real-time RT–PCR. The virus was identified and characterized by gene sequencing and phylogenetic analysis. Results In 2021, for the first time in Taiwan, an influenza A(H1N2)v virus was isolated from a 5-year old girl who was suffering from fever, runny nose and cough. The isolated virus was designated A/Taiwan/1/2021(H1N2)v. Full-genome sequencing and phylogenetic analyses revealed that A/Taiwan/1/2021(H1N2)v is a novel reassortant virus containing hemagglutinin (HA) and neuraminidase (NA) gene segments derived from swine influenza A(H1N2) viruses that may have been circulating in Taiwan for decades, and the other 6 internal genes (PB2, PB2, PA, NP, M and NS) are from human A(H1N1)pdm09 viruses. Conclusion Notably, the HA and NA genes of A/Taiwan/1/2021(H1N2)v separately belong to specific clades that are unique for Taiwanese swine and were proposed to be introduced from humans in different time periods. Bidirectional transmission between humans and swine contributes to influenza virus diversity and poses the next pandemic threat. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-022-01794-2.
Collapse
Affiliation(s)
- Ji-Rong Yang
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, No. 161, Kun-Yang Street, Taipei, 11561, Taiwan, ROC
| | - Chuan-Yi Kuo
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, No. 161, Kun-Yang Street, Taipei, 11561, Taiwan, ROC
| | - I-Ling Yu
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, No. 161, Kun-Yang Street, Taipei, 11561, Taiwan, ROC
| | - Fang-Yen Kung
- Department of Laboratory Medicine, Changhua Christian Hospital, Changhua, Taiwan, ROC
| | - Fang-Tzy Wu
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, No. 161, Kun-Yang Street, Taipei, 11561, Taiwan, ROC
| | - Jen-Shiou Lin
- Department of Laboratory Medicine, Changhua Christian Hospital, Changhua, Taiwan, ROC
| | - Ming-Tsan Liu
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, No. 161, Kun-Yang Street, Taipei, 11561, Taiwan, ROC.
| |
Collapse
|
4
|
Dou M, Song W, Lin Y, Chen Q, Lu C, Liu Z. Clinical characteristics and viral analysis of severe influenza A [H1N1]pdm09 in Guangzhou, 2019. J Med Virol 2022; 94:2568-2577. [PMID: 35146773 DOI: 10.1002/jmv.27642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/08/2022] [Accepted: 01/31/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To understand the clinical characteristics of and analyze viral genes in patients with severe pneumonia due to [H1N1]pdm09 influenza virus in Guangzhou, 2019. METHODS The clinical data of 120 inpatients with laboratory-confirmed influenza A H1N1 virus from January to March 2019 were collected and analyzed. The subjects were diagnosed according to the criteria of the "Diagnosis and Treatment Program of Influenza A H1N1 (third Edition 2009)" issued by the Ministry of Health and were divided into severe and nonsevere groups. Serum samples during fever were collected for cytokine analysis, and the viral genes were analyzed after the virus cultured in MDCK cells. The data were analyzed by SPSS 16 software, and the results of gene sequencing were analyzed by MEGA 6 software. RESULTS Among the 120 inpatients, 36 (30%) were severe and 84 (70%) were nonsevere patients. The average age of severe patients was 53.11 ±19.94 years, the average age of nonsevere patients, at 44.03 ±24.47 years. There was no significant difference between the two groups (p< 0.05). There were significant differences in the rates of moist rales and dyspnea in critically ill patients (p< 0.05). There were significant differences in the white blood cell count (WBC), lactate dehydrogenase (LDH), creatine kinase (CK), serum creatinine (sCr), procalcitonin (PCT) and C-reactive protein (CRP) in severe patients with type A H1N1. Chest radiologic findings in severe patients showed ground glass shadows or pulmonary solid changes, and the difference was statistically significant for pulmonary fibrosis. Chronic lung disease (52.8%) and cardiovascular disease (27.8%) were independent risk factors for severe disease (p< 0.05). There were significant differences in secondary infections by Staphylococcus aureus (11.1%), pulmonary Aspergillus (22%) and Acinetobacter baumannii (16.7%) in critically ill patients (p< 0.05). Serum IL-8 in critically ill patients was significantly higher than those in nonsevere patients and healthy controls. The origin of virus strains in severe and nonsevere patients was the same, and there was no obvious mutation in the amino acid region of the antigenic site of the HA protein, but compared with the results of gene sequencing in previous years, the mutation sites showed a trend of annual accumulation. In conclusion, there was a high risk of severe pneumonia caused by H1N1 influenza A virus in Guangzhou in spring 2019. Long-term continuous surveillance, prevention and control of the virus should be carried out to predict its epidemiology and distribution. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Min Dou
- Department of Laboratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenjun Song
- State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine, Guangzhou Medical University, Guangzhou, China
| | - Yongping Lin
- Department of Laboratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Qigao Chen
- Department of Laboratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Chang Lu
- Department of Laboratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhongmin Liu
- Department of Laboratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|