1
|
Parhi A, Maya D, Sablani SS. Pioneering high barrier packaging for pressure assisted thermal sterilization of low-acid food products. Food Res Int 2024; 196:115126. [PMID: 39614522 DOI: 10.1016/j.foodres.2024.115126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/27/2024] [Accepted: 09/20/2024] [Indexed: 12/01/2024]
Abstract
Pressure-assisted thermal sterilization (PATS) utilizes flexible packaging with low oxygen and water vapor transmission rates (OTRs, WVTRs). In this study, pouches made from metal oxide (MO)-coated (A-D) and ethylene vinyl alcohol (EVOH)-containing (E, F) multilayer films were filled with water and mashed potatoes (MP), preheated at 98 ± 0.5 °C for 10 min, and processed using a pilot-scale high-pressure processing machine (HPP) at 600 ± 5 MPa for 300 s. The initial vessel temperature and the fluid medium were 90 °C, and during processing, the temperature of the fluid medium increased to approximately 120 °C. After processing, the water-filled pouches were emptied, refilled with a novel oxygen indicator, and stored at 40 ± 0.2 °C for 80 days. The MP-filled pouches were stored at 49 ± 1 °C for 60 days. MO-coated film D contained fewer defects, had ultra-low OTRs and WVTRs, showed insignificant (p > 0.05) moisture absorption and changes in crystallinity after PATS processing, and exhibited minimal color change in both the oxygen indicator and the packaged MP during the 60 days of storage. The ultra-high barrier of film D could be attributed to the presence of multiple AlOx-coated PET layers that successfully prevented oxygen ingress, even after exposure to high temperature and pressure conditions during PATS processing. Among the EVOH-based structures, the Film F showed a 22.3 % lower OTR than Film E (p < 0.05), due to a 16.7 % greater EVOH-layer thickness, despite having a lower overall thickness than Film E. Overall, this study can assist packaging manufacturers in designing and developing high-barrier flexible packaging suitable for in-package, shelf-stable food products.
Collapse
Affiliation(s)
- Ashutos Parhi
- Department of Biological Systems Engineering, Washington State University, P.O. Box-646120, WA 99164-6120, USA; Department of Apparel, Merchandising, Design and Textiles, Washington State University, P.O. Box-646120, WA 99164-6120, USA.
| | - Diana Maya
- Kuraray America, Inc., Pasadena, TX 77507, USA
| | - Shyam S Sablani
- Department of Biological Systems Engineering, Washington State University, P.O. Box-646120, WA 99164-6120, USA.
| |
Collapse
|
2
|
Fu Y, Huo C, Liu S, Li K, Meng Y. Non-Isothermal Crystallization Kinetics of Montmorillonite/Polyamide 610 Nanocomposites. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1814. [PMID: 37368244 DOI: 10.3390/nano13121814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023]
Abstract
Non-isothermal crystallization kinetics of montmorillonite (MMT)/polyamide 610 (PA610) composites were readily prepared by in situ melt polymerization followed by a full investigation in terms of their microstructure, performance, and crystallization kinetics. The kinetic models of Jeziorny, Ozawa, and Mo were used in turn to fit the experimental data, in all of which Mo's analytical method was found to be the best model for the kinetic data. Differential scanning calorimetry (DSC) and transmission electron microscopy (TEM) studies were used to investigate the isothermal crystallization behavior and MMT dispersion levels in the MMT/PA610 composites. The experiment results revealed that low MMT content can promote the PA610 crystallization, whilst high MMT content result in MMT agglomeration, and reduce the PA610 crystallization rate.
Collapse
Affiliation(s)
- Yang Fu
- High & New Technology Research Center of Henan Academy of Sciences, Zhengzhou 450002, China
| | - Cuimeng Huo
- Institute of Chemistry Co., Ltd., Henan Academy of Sciences, Zhengzhou 450002, China
| | - Shuangyan Liu
- High & New Technology Research Center of Henan Academy of Sciences, Zhengzhou 450002, China
| | - Keqing Li
- High & New Technology Research Center of Henan Academy of Sciences, Zhengzhou 450002, China
| | - Yuezhong Meng
- Research Center of Green Catalysts, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450000, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
3
|
Marcoaldi C, Pardo-Figuerez M, Prieto C, Arnal C, Torres-Giner S, Cabedo L, Lagaron JM. Electrospun Multilayered Films Based on Poly(3-hydroxybutyrate- co-3-hydroxyvalerate), Copolyamide 1010/1014, and Electrosprayed Nanostructured Silica. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:972. [PMID: 36985866 PMCID: PMC10052066 DOI: 10.3390/nano13060972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
In this research, bio-based electrospun multilayered films for food packaging applications with good barrier properties and close to superhydrophobic behavior were developed. For this purpose, two different biopolymers, a low-melting point and fully bio-based synthetic aliphatic copolyamide 1010/1014 (PA1010/1014) and the microbially synthesized poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and food-contact-complying organomodified silica (SiO2) nanostructured microparticles, were processed by electrospinning. The production of the multilayer structure was finally obtained by means of a thermal post-treatment, with the aim to laminate all of the components by virtue of the so-called interfiber coalescence process. The so developed fully electrospun films were characterized according to their morphology, their permeance to water vapor and oxygen, the mechanical properties, and their water contact angle properties. Interestingly, the annealed electrospun copolyamide did not show the expected improved barrier behavior as a monolayer. However, when it was built into a multilayer form, the whole assembly exhibited a good barrier, an improved mechanical performance compared to pure PHBV, an apparent water contact angle of ca. 146°, and a sliding angle of 8°. Consequently, these new biopolymer-based multilayer films could be a bio-based alternative to be potentially considered in more environmentally friendly food packaging strategies.
Collapse
Affiliation(s)
- Chiara Marcoaldi
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain
| | - Maria Pardo-Figuerez
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain
| | - Cristina Prieto
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain
| | - Carmen Arnal
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain
| | - Sergio Torres-Giner
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain
| | - Luis Cabedo
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I (UJI), Avenida de Vicent Sos Baynat s/n, 12071 Castellón, Spain
| | - Jose M. Lagaron
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain
| |
Collapse
|
4
|
Soriano Cuadrado B, Peñas Sanjuan A, Rodríguez López J, Delgado Blanca I, Grande MJ, Lucas R, Galvez A, Pulido RP. Effect of High-Pressure Treatments on the Properties of Food Packaging Materials with or without Antimicrobials. Polymers (Basel) 2022; 14:polym14245535. [PMID: 36559902 PMCID: PMC9781364 DOI: 10.3390/polym14245535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/24/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The aim of this research work was the comparative study of the different properties of interest in the case of plastic materials for food use before and after being subjected to treatment by high hydrostatic pressure (HHP) as well as the impact of additivation with antimicrobials. This method of food preservation is currently on the rise and is of great interest because it is possible to extend the shelf life of many foods without the need for the use of additives or thermal processing, as is the case with other preservation methods currently used. The effects of HHP treatment (680 MPa for 8 min) on plastic materials commonly used in the food industry were studied. These materials, in sheet or film form, were polyethylene (PE), polyethylene terephthalate (PET), polystyrene (PS), multilayer polyethylene terephthalate-ethylene-vinyl alcohol copolymer-polyethylene (PET-EVOH-PE), multilayer polyethylene-polyethylene terephthalate (PE-PET), polyvinyl chloride aluminum (PVC-AL), and polylactic acid (PLA), which were provided by manufacturing companies in the sector. PE, PP, and PLA activated with tyrosol, zinc oxide, or zinc acetate were also tested. The phenomena and properties, such as overall migration, thermal behavior, oxygen barrier, and physical properties were analyzed before and after the process. The results show that the HHP process only slightly affected the properties of the materials. After pressurization, oxygen permeability increased greatly in PVC-AL (from 7.69 to 51.90) and decreased in PLA (from 8.77 to 3.60). The additivation of the materials caused a change in color and an increase in oxygen permeability. The additivated PE and PP showed migration values above the legal limit for certain simulants. The HHP treatment did not greatly affect the mechanical properties of the additivated materials. The main increases in the migration after HHP treatment were observed for PE activated with tyrosol or zinc oxide and for PS activated with zinc oxide. Activated PLA performed the best in the migration studies, irrespective of the HHP treatment. The results suggest that activated PLA could be used in HHP food processing as an inner antimicrobial layer in contact with the food packed in a container with the desired oxygen permeability barrier.
Collapse
Affiliation(s)
| | | | | | | | - Maria José Grande
- Department of Health Sciences, University of Jaen, 23071 Jaén, Spain
| | - Rosario Lucas
- Department of Health Sciences, University of Jaen, 23071 Jaén, Spain
| | - Antonio Galvez
- Department of Health Sciences, University of Jaen, 23071 Jaén, Spain
- Correspondence: ; Tel.: +34-953-212-160
| | | |
Collapse
|
5
|
Zong TX, Silveira AP, Morais JAV, Sampaio MC, Muehlmann LA, Zhang J, Jiang CS, Liu SK. Recent Advances in Antimicrobial Nano-Drug Delivery Systems. NANOMATERIALS 2022; 12:nano12111855. [PMID: 35683711 PMCID: PMC9182179 DOI: 10.3390/nano12111855] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/28/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022]
Abstract
Infectious diseases are among the major health issues of the 21st century. The substantial use of antibiotics over the years has contributed to the dissemination of multidrug resistant bacteria. According to a recent report by the World Health Organization, antibacterial (ATB) drug resistance has been one of the biggest challenges, as well as the development of effective long-term ATBs. Since pathogens quickly adapt and evolve through several strategies, regular ATBs usually may result in temporary or noneffective treatments. Therefore, the demand for new therapies methods, such as nano-drug delivery systems (NDDS), has aroused huge interest due to its potentialities to improve the drug bioavailability and targeting efficiency, including liposomes, nanoemulsions, solid lipid nanoparticles, polymeric nanoparticles, metal nanoparticles, and others. Given the relevance of this subject, this review aims to summarize the progress of recent research in antibacterial therapeutic drugs supported by nanobiotechnological tools.
Collapse
Affiliation(s)
- Tong-Xin Zong
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (T.-X.Z.); (J.Z.)
| | - Ariane Pandolfo Silveira
- Institute of Biological Sciences, University of Brasília, Brasilia 70910900, Brazil; (A.P.S.); (J.A.V.M.); (M.C.S.)
| | | | - Marina Carvalho Sampaio
- Institute of Biological Sciences, University of Brasília, Brasilia 70910900, Brazil; (A.P.S.); (J.A.V.M.); (M.C.S.)
| | - Luis Alexandre Muehlmann
- Institute of Biological Sciences, University of Brasília, Brasilia 70910900, Brazil; (A.P.S.); (J.A.V.M.); (M.C.S.)
- Faculty of Ceilandia, University of Brasilia, Brasilia 72220900, Brazil
- Correspondence: (L.A.M.); (C.-S.J.); (S.-K.L.)
| | - Juan Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (T.-X.Z.); (J.Z.)
| | - Cheng-Shi Jiang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (T.-X.Z.); (J.Z.)
- Correspondence: (L.A.M.); (C.-S.J.); (S.-K.L.)
| | - Shan-Kui Liu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (T.-X.Z.); (J.Z.)
- Correspondence: (L.A.M.); (C.-S.J.); (S.-K.L.)
| |
Collapse
|
6
|
Bumbudsanpharoke N, Jinkarn T. Effect of high-pressure food processing on selected flexible packaging: Structure, physicochemical properties, and migration. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.110970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Functionalization of legume proteins using high pressure processing: Effect on technofunctional properties and digestibility of legume proteins. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Trossaert L, De Vel M, Cardon L, Edeleva M. Lifting the Sustainability of Modified Pet-Based Multilayer Packaging Material with Enhanced Mechanical Recycling Potential and Processing. Polymers (Basel) 2022; 14:polym14010196. [PMID: 35012219 PMCID: PMC8747722 DOI: 10.3390/polym14010196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 01/29/2023] Open
Abstract
Sustainability and recyclability are among the main driving forces in the plastics industry, since the pressure on crude oil resources and the environment is increasing. The aim of this research is to develop a sustainable thermoformable multilayer food packaging, based on co-polyesters, which is suitable for hot-fill applications and allows for recycling in a conventional waste stream. As a polymer material for the outer layer, we selected a modified polyethylene terephthalate (PETM), which is an amorphous co-polyester with a high glass transition temperature (±105 °C) and thus high thermal stability and transparency. The inner layer consists of 1,4-cyclohexylene dimethanol-modified polyethylene terephthalate (PETg), which is allowed to be recycled in a PET stream. Multilayers with a total thickness of 1 mm and a layer thickness distribution of 10/80/10 have been produced. To test the recyclability, sheets which contained 20% and 50% regrind of the initial multilayer in their middle PETg layer have been produced as well. The sheet produced from virgin pellets and the one containing 20% regrind in the middle layer showed no visible haze. This was not the case for the one containing 50% regrind in the middle layer, which was confirmed by haze measurements. The hot-fill test results showed no shrinkage or warpage for the multilayer trays for all temperatures applied, namely 95, 85, 75 and 65 °C. This is a remarkable improvement compared to pure PETg trays, which show a visible deformation after exposure to hot-fill conditions of 95 °C and 85 °C.
Collapse
Affiliation(s)
- Lynn Trossaert
- Centre for Polymer and Material Technologies (CPMT), Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark, 130, Zwijnaarde 9052, 9000 Ghent, Belgium; (L.T.); (L.C.)
- Laboratory for Chemical Technology (LCT), Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark, 125, Zwijnaarde 9052, 9000 Ghent, Belgium
| | - Matthias De Vel
- Eastman Chemical Company, Technologiepark 21-Zone B2, Zwijnaarde 9052, 9000 Ghent, Belgium;
| | - Ludwig Cardon
- Centre for Polymer and Material Technologies (CPMT), Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark, 130, Zwijnaarde 9052, 9000 Ghent, Belgium; (L.T.); (L.C.)
| | - Mariya Edeleva
- Laboratory for Chemical Technology (LCT), Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark, 125, Zwijnaarde 9052, 9000 Ghent, Belgium
- Correspondence:
| |
Collapse
|
9
|
Wei Chen H, Po Fang W. A novel method for the microencapsulation of curcumin by high-pressure processing for enhancing the stability and preservation. Int J Pharm 2021; 613:121403. [PMID: 34933079 DOI: 10.1016/j.ijpharm.2021.121403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/04/2021] [Accepted: 12/15/2021] [Indexed: 11/25/2022]
Abstract
Curcumin is used for the development of new pharmaceutical and food products, but its application is generally hindered by the poor solubility of curcumin and thermal instability during storage and processing. In this study, the liposomes of curcumin (cur-liposomes) were prepared by a novel combination of ethanol injection and high-pressure processing (HPP) to enhance the stability and preservation of curcumin. The pasteurization, mean particle size, size distribution, and encapsulation efficiency of cur-liposomes and the kinetics of their thermal degradation were also investigated in this research. From the results, the kinetic rate constants of curcumin in samples of free curcumin and cur-liposome at 25 °C were found to be 1.6 × 10-3 and 0.8 × 10-3 min-1, respectively. The phospholipid bilayer structure could protect curcumin. The results propose that the HPP method for liposome preparation is superior to the probe-sonication method in terms of stability, encapsulation efficiency, and homogeneity. Furthermore, the preparation of cur-liposomes by HPP with a hydrostatic pressure of 200 MPa could maintain the optimal particle size (206.4 nm) and polydispersity index (0.19). Conclusively, the combination of ethanol injection and HPP can not only successfully inactivate the microorganisms during liposome preparation for microencapsulation of bioactive compounds but also effectively preventthe thermal degradation of heat-sensitive substances in non-thermal processing for practical applications.
Collapse
Affiliation(s)
- Hua Wei Chen
- Department of Chemical and Materials Engineering, National Ilan University, 1, Sec. 1, Shen-Lung Road, Yilan 260, Taiwan, Republic of China.
| | - Wu Po Fang
- Department of Chemical and Materials Engineering, National Ilan University, 1, Sec. 1, Shen-Lung Road, Yilan 260, Taiwan, Republic of China
| |
Collapse
|
10
|
Marangoni Júnior L, Rodrigues PR, da Silva RG, Vieira RP, Alves RMV. Sustainable Packaging Films Composed of Sodium Alginate and Hydrolyzed Collagen: Preparation and Characterization. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02727-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Stefanini R, Ronzano A, Borghesi G, Vignali G. Benefits and effectiveness of high pressure processing on cheese: a ricotta case study. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2021. [DOI: 10.1515/ijfe-2021-0023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abstract
Today High Pressure Processing (HPP) is receiving interest thanks to its ability to stabilize foods preserving nutritional and sensorial characteristics. This work applies HPP on nutrient ricottas created in the Parmigiano Reggiano area and demonstrates not only its benefits, but also disadvantages, testing different pressures and packaging. Moreover, the ability of HPP to prolong the lag phase and reduce the maximum growth rate of bacteria is illustrated with a mathematical model. Results show the influence of HPP parameters on microbial growth, volatile organic compounds, syneresis, softness and colour, and demonstrate that not all packaging are suitable for the treatment. Obtained data highlight the effectiveness of HPP, which results the best stabilization method to sell safe and nutritive ricottas on the market with a long shelf life. Of course, the work can be a starting point for food companies who want to test an innovative and promising non-thermal technology.
Collapse
Affiliation(s)
- Roberta Stefanini
- Department of Engineering and Architecture , University of Parma , Parco Area delle Scienze 181/A , 43124 Parma , Italy
| | - Anna Ronzano
- Cipack Centre , University of Parma , Parco Area delle Scienze , 43124 Parma , Italy
| | - Giulia Borghesi
- Cipack Centre , University of Parma , Parco Area delle Scienze , 43124 Parma , Italy
| | - Giuseppe Vignali
- Department of Engineering and Architecture , University of Parma , Parco Area delle Scienze 181/A , 43124 Parma , Italy
| |
Collapse
|
12
|
Gonçalves SM, Chávez DWH, Oliveira LMD, Sarantópoulos CIGDL, Carvalho CWPD, Melo NRD, Rosenthal A. Effects of high hydrostatic pressure processing on structure and functional properties of biodegradable film. Heliyon 2020; 6:e05213. [PMID: 33088965 PMCID: PMC7557889 DOI: 10.1016/j.heliyon.2020.e05213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/05/2020] [Accepted: 10/07/2020] [Indexed: 11/25/2022] Open
Abstract
Effects of high hydrostatic pressure (HHP) processing (200–400 MPa/5 or 10 min) on functional properties of cellulose acetate (CA) films were investigated. As for mechanical properties, HHP caused a reduction in tensile strength (TS), Young's modulus (YM) and an increase in elongation at break (EB). The pressurized films were more luminous, yellowish, reddish and opaque. Less affinity for water was detected for pressurized films through analyses of contact angle and moisture absorption, in addition to reducing the water vapor transmission rate (WVTR). Scanning electron microscopy (SEM) showed the occurrence of delamination for most films, except those treated with 200 MPa/10 min and 300 MPa/10 min. All films showed a predominance of amorphous structure in X-ray diffraction analysis (XRD). That is alignment with the results of differential scanning calorimetry (DSC), which presented values for glass transition temperature (Tg), water adsorption and melting temperature characteristic of materials with low crystallinity. Films treated with HHP had better mechanical resistance during the sealing at 250 °C. In overall the results confirmed the minimal influence of HHP on the functional properties of the CA film and contributed to the scientific and technological knowledge for its potential application in foods processed by HHP.
Collapse
Affiliation(s)
- Sheyla Moreira Gonçalves
- Department of Food Science and Technology, Rodovia 465 - Km 7, UFRRJ, Seropédica, RJ 23891-360, Brazil
| | | | - Léa Mariza de Oliveira
- Packaging Technology Center Cetea, Food Technology Institute Ital, Campinas, São Paulo, Brazil
| | | | - Carlos Wanderley Piler de Carvalho
- Department of Food Science and Technology, Rodovia 465 - Km 7, UFRRJ, Seropédica, RJ 23891-360, Brazil.,Embrapa Food Technology, Av. das Américas, 29501, Guaratiba, Rio de Janeiro, RJ 23020-470, Brazil
| | - Nathália Ramos de Melo
- Department of Food Science and Technology, Rodovia 465 - Km 7, UFRRJ, Seropédica, RJ 23891-360, Brazil.,Department of Agribusiness Engineering, Av. dos Trabalhadores 420 - Vila Sta. Cecília, UFF, Volta Redonda, RJ 27255-125, Brazil
| | - Amauri Rosenthal
- Department of Food Science and Technology, Rodovia 465 - Km 7, UFRRJ, Seropédica, RJ 23891-360, Brazil.,Embrapa Food Technology, Av. das Américas, 29501, Guaratiba, Rio de Janeiro, RJ 23020-470, Brazil
| |
Collapse
|
13
|
Marangoni Júnior L, Cristianini M, Anjos CAR. Packaging aspects for processing and quality of foods treated by pulsed light. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14902] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Luís Marangoni Júnior
- Department of Food Technology, School of Food Engineering University of Campinas Campinas Brazil
| | - Marcelo Cristianini
- Department of Food Technology, School of Food Engineering University of Campinas Campinas Brazil
| | | |
Collapse
|
14
|
Marangoni Júnior L, Alves RMV, Moreira CQ, Cristianini M, Padula M, Anjos CAR. High‐pressure processing effects on the barrier properties of flexible packaging materials. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14865] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Luís Marangoni Júnior
- Department of Food Technology School of Food Engineering University of Campinas Campinas Brazil
- Packaging Technology Center, CETEA Food Technology Institute, ITAL Campinas Brazil
| | | | | | - Marcelo Cristianini
- Department of Food Technology School of Food Engineering University of Campinas Campinas Brazil
| | - Marisa Padula
- Packaging Technology Center, CETEA Food Technology Institute, ITAL Campinas Brazil
| | | |
Collapse
|
15
|
Figueroa-Lopez KJ, Cabedo L, Lagaron JM, Torres-Giner S. Development of Electrospun Poly(3-hydroxybutyrate- co-3-hydroxyvalerate) Monolayers Containing Eugenol and Their Application in Multilayer Antimicrobial Food Packaging. Front Nutr 2020; 7:140. [PMID: 33015118 PMCID: PMC7509432 DOI: 10.3389/fnut.2020.00140] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/20/2020] [Indexed: 12/22/2022] Open
Abstract
In this research, different contents of eugenol in the 2.5-25 wt.% range were first incorporated into ultrathin fibers of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) by electrospinning and then subjected to annealing to obtain antimicrobial monolayers. The most optimal concentration of eugenol in the PHBV monolayer was 15 wt.% since it showed high electrospinnability and thermal stability and also yielded the highest bacterial reduction against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). This eugenol-containing monolayer was then selected to be applied as an interlayer between a structural layer made of a cast-extruded poly(3-hydroxybutyrate) (PHB) sheet and a commercial PHBV film as the food contact layer. The whole system was, thereafter, annealed at 160°C for 10 s to develop a novel multilayer active packaging material. The resultant multilayer showed high hydrophobicity, strong adhesion and mechanical resistance, and improved barrier properties against water vapor and limonene vapors. The antimicrobial activity of the multilayer structure was also evaluated in both open and closed systems for up to 15 days, showing significant reductions (R ≥ 1 and < 3) for the two strains of food-borne bacteria. Higher inhibition values were particularly attained against S. aureus due to the higher activity of eugenol against the cell membrane of Gram positive (G+) bacteria. The multilayer also provided the highest antimicrobial activity for the closed system, which better resembles the actual packaging and it was related to the headspace accumulation of the volatile compounds. Hence, the here-developed multilayer fully based on polyhydroxyalkanoates (PHAs) shows a great deal of potential for antimicrobial packaging applications using biodegradable materials to increase both quality and safety of food products.
Collapse
Affiliation(s)
- Kelly J. Figueroa-Lopez
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish National Research Council (CSIC), Paterna, Spain
| | - Luis Cabedo
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I (UJI), Castellón de la Plana, Spain
| | - Jose M. Lagaron
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish National Research Council (CSIC), Paterna, Spain
| | - Sergio Torres-Giner
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish National Research Council (CSIC), Paterna, Spain
| |
Collapse
|