1
|
Gohari AS, Nateghi L, Rashidi L, Berenji S. Preparation and characterization of sodium caseinate-apricot tree gum/gum Arabic nanocomplex for encapsulation of conjugated linoleic acid (CLA). Int J Biol Macromol 2024; 261:129773. [PMID: 38296128 DOI: 10.1016/j.ijbiomac.2024.129773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/01/2024] [Accepted: 01/24/2024] [Indexed: 02/03/2024]
Abstract
Nanocomplexes (NCs) were formed through electrostatic complexation theory using Na-caseinate (NaCa), gum Arabic (GA), and Prunus armeniaca L. gum exudates (PAGE), aimed to encapsulate Conjugated linoleic acid (CLA). Encapsulation was optimized using NaCa (0.1 %-0.5 %), GA/PAGE (0.1 %-0.9 %) and CLA (1 %-5 %), and central composite design (CCD) was employed for numerical optimization. The optimum conditions for NC containing GA (NCGA) were 0.336 %, 0.437 %, and 3.10 % and for NC containing PAGE (NCPAGE) were 0.403 %, 0.730 %, and 4.177 %, of NaCa, GA/PAGE, and CLA, respectively. EE and particle size were 92.46 % and 52.89 nm for NCGA while 88.23 % and 54.76 nm for NCPAGE, respectively. Fourier transform infrared spectroscopy (FTIR) indicated that CLA was physically entrapped. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) confirmed the electrostatic complex formation. The elastic modulus was predominant for NCGA and NCPAGE dispersions while the complex viscosity of NCPAGE suspension was slightly higher than that of NCGA. The CLA in NCGA-CLA and NCPAGE-CLA exhibited higher oxidative stability than free CLA during 30 days of storage without a significant difference between the results of CLA oxidative stability tests obtained for NCs. Consequently, NCPAGE and NCGA could be applied for the entrapment and protection of nutraceuticals in the food industry.
Collapse
Affiliation(s)
- Alireza Saeed Gohari
- Department of Food Science and Technology, Faculty of Agriculture, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| | - Leila Nateghi
- Department of Food Science and Technology, Faculty of Agriculture, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran.
| | - Ladan Rashidi
- Research Center of Food Technology and Agricultural Products, Standard Research Institute (SRI), P.O. Box 31745-139, Karaj, Iran.
| | - Shila Berenji
- Department of Food Science and Technology, Faculty of Agriculture, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| |
Collapse
|
2
|
He J, Hadidi M, Yang S, Khan MR, Zhang W, Cong X. Natural food preservation with ginger essential oil: Biological properties and delivery systems. Food Res Int 2023; 173:113221. [PMID: 37803539 DOI: 10.1016/j.foodres.2023.113221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 10/08/2023]
Abstract
Recently, the increasing demand from consumers for preservative-free or naturally preserved foods has forced the food industry to turn to natural herbal and plant-derived preservatives rather than synthetic preservatives to produce safe foods. Essential oils derived from ginger (Zingiber officinale Roscoe) are widely known for their putative health-promoting bioactivities, and this paper covers their extraction methods, chemical composition, and antibacterial and antioxidant activities. Especially, the paper reviews their potential applications in food preservation, including nanoemulsions, emulsions, solid particle encapsulation, and biodegradable food packaging films/coatings. The conclusion drawn is that ginger essential oil can be used not only for direct food preservation but also encapsulated using various delivery forms such as nanoemulsions, Pickering emulsions, and solid particle encapsulation to improve its release control ability. The film of encapsulated ginger essential oil has been proven to be superior to traditional methods in preserving foods such as bread, meat, fish, and fruit.
Collapse
Affiliation(s)
- Jinman He
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China; School of Life Sciences, Hainan University, Haikou 570228, PR China
| | - Milad Hadidi
- Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Siyuan Yang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China.
| | - Xinli Cong
- School of Life Sciences, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
3
|
Yang C, Zhang Z, Gan L, Zhang L, Yang L, Wu P. Application of Biomedical Microspheres in Wound Healing. Int J Mol Sci 2023; 24:7319. [PMID: 37108482 PMCID: PMC10138683 DOI: 10.3390/ijms24087319] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Tissue injury, one of the most common traumatic injuries in daily life, easily leads to secondary wound infections. To promote wound healing and reduce scarring, various kinds of wound dressings, such as gauze, bandages, sponges, patches, and microspheres, have been developed for wound healing. Among them, microsphere-based tissue dressings have attracted increasing attention due to the advantage of easy to fabricate, excellent physicochemical performance and superior drug release ability. In this review, we first introduced the common methods for microspheres preparation, such as emulsification-solvent method, electrospray method, microfluidic technology as well as phase separation methods. Next, we summarized the common biomaterials for the fabrication of the microspheres including natural polymers and synthetic polymers. Then, we presented the application of the various microspheres from different processing methods in wound healing and other applications. Finally, we analyzed the limitations and discussed the future development direction of microspheres in the future.
Collapse
Affiliation(s)
- Caihong Yang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Zhikun Zhang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Lu Gan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Lexiang Zhang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Lei Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Pan Wu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
4
|
Ferreira S, Nicoletti VR, Dragosavac M. Novel methods to induce complex coacervation using dual fluid nozzle and metal membranes: Part II – use of metal membrane technology to induce complex coacervation. FOOD AND BIOPRODUCTS PROCESSING 2023. [DOI: 10.1016/j.fbp.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
5
|
Controlled Release of Vitamin U from Microencapsulated Brassica oleracea L. var. capitata Extract for Peptic Ulcer Treatment. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02965-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Amani F, Azadi A, Rezaei A, Kharazmi MS, Jafari SM. Preparation of soluble complex carriers from Aloe vera mucilage/gelatin for cinnamon essential oil: Characterization and antibacterial activity. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Zhang L, Zhang M, Ju R, Mujumdar AS, Deng D. Recent advances in essential oil complex coacervation by efficient physical field technology: A review of enhancing efficient and quality attributes. Crit Rev Food Sci Nutr 2022; 64:3384-3406. [PMID: 36226715 DOI: 10.1080/10408398.2022.2132207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Although complex coacervation could improve the water solubility, thermal stability, bioavailability, antioxidant activity and antibacterial activity of essential oils (EOs). However, some wall materials (such as proteins and polysaccharides) with water solubility and hydrophobic nature limited their application in complex coacervation. In order to improve the properties of EO complex coacervates, some efficient physical field technology was proposed. This paper summarizes the application and functional properties of EOs in complex coacervates, formation and controlled-release mechanism, as well as functions of EO complex coacervates. In particular, efficient physical field technology as innovative technology, such as high pressure, ultrasound, cold plasma, pulsed electric fields, electrohydrodynamic atomization and microwave technology improved efficient and quality attributes of EO complex coacervates are reviewed. The physical fields could modify the gelling, structural, textural, emulsifying, rheological properties, solubility of wall material (proteins and polysaccharides), which improve the properties of EO complex coacervates. Overall, EOs complex coacervates possess great potential to be used in the food industry, including high bioavailability, excellent antioxidant capacity and gut microbiota in vivo, masking the sensation of off-taste or flavor, favorable antimicrobial capacity.
Collapse
Affiliation(s)
- Lihui Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, Jiangsu, China
| | - Ronghua Ju
- Agricultural and Forestry Products Deep Processing Technology and Equipment Engineering Center of Jiangsu Province, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Montreal, Quebec, Canada
| | - Dewei Deng
- Zhengzhou Xuemailong Food Flavor Co, Zhengzhou, Henan, China
| |
Collapse
|
8
|
Chen W, Xia S, Xiao C. Complex coacervation microcapsules by tannic acid crosslinking prolong the antifungal activity of cinnamaldehyde against Aspergillus brasiliensis. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101686] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Amani F, Rezaei A, Damavandi MS, Doost AS, Jafari SM. Colloidal carriers of almond gum/gelatin coacervates for rosemary essential oil: Characterization and in-vitro cytotoxicity. Food Chem 2022; 377:131998. [PMID: 34999451 DOI: 10.1016/j.foodchem.2021.131998] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/04/2021] [Accepted: 11/25/2021] [Indexed: 11/04/2022]
Abstract
The potential of almond gum and gelatin complex coacervates as a colloidal carrier for rosemary essential oil (REO) was investigated along with in-vitro gastrointestinal release and cytotoxicity. The optimum formulation (1 gelatin:2 almond gum and 7% (w/w) REO) was selected based on encapsulation efficiency (43.6%) and encapsulation yield (99.3%). The particle size was 6.9 µm with a high negative zeta-potential (-37.3 mV). FTIR and XRD data revealed that REO was properly loaded within carriers and there were interactions between gelatin and almond gum. Thermal stability of REO was enhanced after complex coacervation according to TGA. REO released slowly from carriers under simulated gastrointestinal fluid. Cytotoxicity of pure REO and REO-loaded complexes was evaluated on 4 T1 cell lines. Encapsulation of REO caused a reduction in toxicity. Overall, coacervates of gelatin-almond gum could be a promising carrier to enhance the application of bioactives in the food and drug industry with low toxicity.
Collapse
Affiliation(s)
- Fateme Amani
- Department of Food Science and Technology, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, P.O. Box: 81746-73461, Isfahan, Iran
| | - Atefe Rezaei
- Department of Food Science and Technology, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, P.O. Box: 81746-73461, Isfahan, Iran.
| | - Mohammad Sadegh Damavandi
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Sedaghat Doost
- Particle and Interfacial Technology Group (PaInT), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Seid Mahdi Jafari
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain; Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
10
|
Ferreira S, Nicoletti VR, Dragosavac M. Novel methods to induce complex coacervation using dual fluid nozzle and metal membranes: Part I – use of metal membranes for emulsification. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Rezvankhah A, Emam‐Djomeh Z, Safari M, Salami M, Askari G. Investigating the effects of maltodextrin, gum arabic, and whey protein concentrate on the microencapsulation efficiency and oxidation stability of hemp seed oil. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Amir Rezvankhah
- Transfer Phenomena Laboratory (TPL), Controlled Release Center, Department of Food Science, Technology and Engineering University College of Agriculture & Natural Resources, University of Tehran, Karaj Campus Karaj Iran
| | - Zahra Emam‐Djomeh
- Transfer Phenomena Laboratory (TPL), Controlled Release Center, Department of Food Science, Technology and Engineering University College of Agriculture & Natural Resources, University of Tehran, Karaj Campus Karaj Iran
- Functional Food Research Core (FFRC) University of Tehran Tehran Iran
- Center of Excellence in Biothermodynamics University of Tehran Tehran Iran
| | - Mohammad Safari
- Transfer Phenomena Laboratory (TPL), Controlled Release Center, Department of Food Science, Technology and Engineering University College of Agriculture & Natural Resources, University of Tehran, Karaj Campus Karaj Iran
| | - Maryam Salami
- Transfer Phenomena Laboratory (TPL), Controlled Release Center, Department of Food Science, Technology and Engineering University College of Agriculture & Natural Resources, University of Tehran, Karaj Campus Karaj Iran
- Functional Food Research Core (FFRC) University of Tehran Tehran Iran
| | - Gholamreza Askari
- Transfer Phenomena Laboratory (TPL), Controlled Release Center, Department of Food Science, Technology and Engineering University College of Agriculture & Natural Resources, University of Tehran, Karaj Campus Karaj Iran
- Functional Food Research Core (FFRC) University of Tehran Tehran Iran
| |
Collapse
|
12
|
Pavani M, Singha P, Dash DR, Asaithambi N, Singh SK. Novel encapsulation approaches for phytosterols and their importance in food products: A review. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mekala Pavani
- Department of Food Process Engineering National Institute of Technology (NIT) Rourkela Rourkela India
| | - Poonam Singha
- Department of Food Process Engineering National Institute of Technology (NIT) Rourkela Rourkela India
| | - Dibya Ranjan Dash
- Department of Food Process Engineering National Institute of Technology (NIT) Rourkela Rourkela India
| | - Niveditha Asaithambi
- Department of Food Process Engineering National Institute of Technology (NIT) Rourkela Rourkela India
| | - Sushil Kumar Singh
- Department of Food Process Engineering National Institute of Technology (NIT) Rourkela Rourkela India
| |
Collapse
|
13
|
Tavares L, Smaoui S, Pinilla CMB, Ben Hlima H, Lopes Barros H. Ginger: a systematic review of clinical trials and recent advances in encapsulation of its bioactive compounds. Food Funct 2022; 13:1078-1091. [PMID: 35080542 DOI: 10.1039/d1fo02998c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Recently, the numbers of studies on natural products have considerably increased owing to their exceptional biological activities and health benefits. Their pharmacological attributes have played an immense role in detecting natural and safe alternative therapeutics, consequently extending their industrial applications. In this line, ginger (Zingiber officinale) has been gaining wide attention owing to its bioactive compounds, such as phenolic and terpene compounds. Ginger has a great pharmacological and biological potential in the prevention and treatment of various diseases, namely colds, nausea, arthritis, migraines and hypertension. However, these bioactive compounds are unstable and susceptible to degradation, volatilization and oxidation during extraction and processing, mainly owing to their exposure to environments with adverse conditions, such as high temperature, the presence of O2 and light. In this sense, this current review covers a wide range of topics, starting from the chemical profile and biological properties of ginger bioactive compounds (GBCs), their clinical effectiveness for the treatment of diseases and the application of different encapsulation methods (molecular inclusion, spray drying, complex coacervation, ionic strength and nanoemulsions) to protect and improve their application in food products. This work summarizes the fundamental principles of, recent progress in and effectiveness of different methods regarding the physicochemical, structural and functional properties of encapsulated GBCs. The potential use of encapsulated GBCs as a promising active ingredient to be applied in different food products is discussed in detail.
Collapse
Affiliation(s)
- Loleny Tavares
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, no. 9500, CEP 91501-970, Porto Alegre, Rio Grande do Sul, Brazil
| | - Slim Smaoui
- Laboratory of Microbial, Enzymatic Biotechnology and Biomolecules (LBMEB), Center of Biotechnology of Sfax, University of Sfax-Tunisia, Road of Sidi Mansour Km 6, PO Box 1177, 3018 Sfax, Tunisia.
| | - Cristian Mauricio Barreto Pinilla
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, no. 9500, CEP 91501-970, Porto Alegre, Rio Grande do Sul, Brazil
| | - Hajer Ben Hlima
- Laboratory of Enzymatic Engineering and Microbiology, Algae Biotechnology Unit, Biological Engineering Department, National School of Engineers of Sfax, 3038, University of Sfax, Tunisia
| | - Hélio Lopes Barros
- Faculty of Pharmacy of the University of Lisbon, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
14
|
Ferreira S, Nicoletti VR. Use of a tubular heat exchanger to achieve complex coacervation in a semi-continuous process: Effects of capsules curing temperature and shear rate. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2021.110698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Effect of Tannic Acid Concentration on the Physicochemical, Thermal, and Antioxidant Properties of Gelatin/Gum Arabic–Walled Microcapsules Containing Origanum onites L. Essential Oil. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02633-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Xu C, Zeng X, Yang Z, Ji H. Sunscreen Enhancement of Octyl Methoxycinnamate Microcapsules by Using Two Biopolymers as Wall Materials. Polymers (Basel) 2021; 13:polym13060866. [PMID: 33799764 PMCID: PMC8001204 DOI: 10.3390/polym13060866] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 12/22/2022] Open
Abstract
Octyl methoxycinnamate (OMC) is widely used as a chemical sunscreen in sunscreen cosmetics. However, its direct contact with the skin would bring certain risks, such as skin photosensitive reaction. How to improve the effect of skin photodamage protection has become a current research hotspot. Encapsulating ultraviolet (UV) filters into microcapsules is an interesting method to increase the photostability of filters. In this study, sodium caseinate (SC) and arabic gum (GA) are chosen as wall materials to prepare synergistic sunscreen microcapsules by complex coacervation technology. A series of experiments are conducted to investigate the effects of pH, wall material concentration, and wall/core ratio on the formation of OMC microcapsules. The morphology, composition, and stability of OMC microcapsules are characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). The OMC microcapsule is uniform in size distribution, smooth in surface morphology, and has good thermal stability. The results show that the ultraviolet absorption of the OMC microcapsules is better than that of the uncoated OMC for the ultraviolet-B (280–320 nm). Moreover, the OMC microcapsule released 40% in 12 h, while OMC released 65%, but the sun protection factor (SPF) of the OMC microcapsule sunscreen is 18.75% higher than that of OMC. This phenomenon may be attributed to the hydrophobic interaction between SC and OMC and the electrostatic interaction between SC and GA.
Collapse
Affiliation(s)
- Chuntao Xu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China;
- School of Information Engineering, Zhongshan Polytechnic, Zhongshan 528400, China
| | - Xuemin Zeng
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China;
| | - Zujin Yang
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China;
- Correspondence: (Z.Y.); (H.J.)
| | - Hongbing Ji
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China;
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China;
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai 519082, China
- School of Chemical Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
- Correspondence: (Z.Y.); (H.J.)
| |
Collapse
|
17
|
Ferreira S, Nicoletti VR. Complex coacervation assisted by a two-fluid nozzle for microencapsulation of ginger oil: Effect of atomization parameters. Food Res Int 2020; 138:109828. [PMID: 33288193 DOI: 10.1016/j.foodres.2020.109828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/08/2020] [Accepted: 10/16/2020] [Indexed: 11/18/2022]
Abstract
This study investigates the influence of the atomization parameters on complex coacervation by atomization, and is following a preceding study that presented the technique and investigated the effects of formulation. Complex coacervated capsules were produced by atomization, using emulsions with 1 and 6%(w/w) of gelatin and ginger oil atomized over a 1%(w/w) solution of gum Arabic, at constant polymer ratio of 1:2 (gelatin:gum Arabic) at pH 3.5. The air velocity at the nozzle varied from 72 to 168 m/s and the emulsion velocity at the nozzle varied from 0.4 to 0.6 m/s, maintaining the air to liquid velocity ratio at 170, 220 and 270. The mean diameter of the microcapsules produced varied from 52 to 75 μm and no crosslinking agents were used. The influence of atomization numbers Weber (We) and Ohnesorge (Oh), shear rate and shear stress on the encapsulation performance was carried out and a proposed model was able to predict the final size of the microcapsules produced at We ≥ 180 and Oh = 0.063. Encapsulation efficiency varied from 9 to 95%, and encapsulation yield varied from 50 to 99%. Finally, optimum conditions based on size prediction and microencapsulation parameters were proposed.
Collapse
Affiliation(s)
- Sungil Ferreira
- São Paulo State University (UNESP), Department of Food Engineering and Technology, São Jose do Rio Preto, SP 15054-000, Brazil.
| | - Vania Regina Nicoletti
- São Paulo State University (UNESP), Department of Food Engineering and Technology, São Jose do Rio Preto, SP 15054-000, Brazil
| |
Collapse
|