1
|
Wang M, Wei Z, Li Y, Jin Z, Xue C. Elucidation of the relationship between milk protein-stevioside interactions and interfacial layer properties based on multi-spectroscopy and interfacial rheology. Food Chem 2025; 468:142512. [PMID: 39700803 DOI: 10.1016/j.foodchem.2024.142512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/06/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024]
Abstract
The intricate interactions between stevioside (STE) and milk protein (mixtures of whey protein isolate and sodium caseinate, WPI/SC) as well as interfacial stabilization mechanisms were investigated. At the molecular scale, it was observed that the incorporation of the steviol hydrophobic skeleton enhanced the surface hydrophobicity of WPI/SC (from 1560.73 to 2175.63), favoring the reduction of the energy barrier for adsorption. At the mesoscopic scale, the analysis of adsorption kinetics and interfacial dilatational rheological response revealed that STE and WPI/SC had a synergistic effect on the attenuation of oil-water interfacial tension, with the lowest value of interfacial tension of 9.46 mN/m. Meanwhile, at low concentrations of STE, the WPI/SC-STE complexes unfolded and self-assembled at the interface to form a spring-like interfacial layer that relaxed in response to external deformation. In contrast, at high concentrations of STE, it gradually replaced WPI/SC-STE complexes at the interface and destabilized the interfacial layer.
Collapse
Affiliation(s)
- Meng Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Zihao Wei
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| | - Yujin Li
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Ziheng Jin
- Henan Zhongda Hengyuan Biotechnology Stock Co., Ltd, Luohe 462600, China
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| |
Collapse
|
2
|
Marongiu L, Brzozowska E, Brykała J, Burkard M, Schmidt H, Szermer-Olearnik B, Venturelli S. The non-nutritive sweetener rebaudioside a enhances phage infectivity. Sci Rep 2025; 15:1337. [PMID: 39779812 PMCID: PMC11711195 DOI: 10.1038/s41598-025-85186-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 01/01/2025] [Indexed: 01/11/2025] Open
Abstract
Non-nutritive sweeteners (NNS) are widely employed in foodstuffs. However, it has become increasingly evident that their consumption is associated with bacterial dysbiosis, which, in turn, is linked to several health conditions, including a higher risk of type 2 diabetes and cancer. Among the NNS, stevia, whose main component is rebaudioside A (rebA), is gaining popularity in the organic food market segment. While the effect of NNS on bacteria has been established, the impact of these sweeteners on bacterial viruses (phages) has been neglected, even though phages are crucial elements in maintaining microbial eubiosis. The present study sought to provide a proof-of-concept of the impact of NNS on phage infectivity by assessing the binding of rebA to phage proteins involved in the infection process of enteropathogenic bacteria, namely the fiber protein gp17 of Yersinia enterocolitica phage φYeO3-12 and the tubular baseplate protein gp31 of Klebsiella pneumoniae phage 32. We employed docking analysis and a panel of in vitro confirmatory tests (microscale thermophoresis, RedStarch™ depolymerization, adsorption, and lysis rates). Docking analysis indicated that NNS can bind to both fiber and baseplate proteins. Confirmatory assays demonstrated that rebA can bind gp31 and that such binding increased the protein's enzymatic activity. Moreover, the binding of rebA to gp17 resulted in a decrease in the adsorption rate of the recombinant protein to its host but increased the Yersinia bacteriolysis caused by the whole phage compared to unexposed controls. These results support the hypothesis that NNS can impair phage infectivity, albeit the resulting effect on the microbiome remains to be elucidated.
Collapse
Affiliation(s)
- Luigi Marongiu
- Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany.
| | - Ewa Brzozowska
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 R. Weigl St, Wroclaw, 53114, Poland
| | - Jan Brykała
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 R. Weigl St, Wroclaw, 53114, Poland
| | - Markus Burkard
- Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany
| | - Herbert Schmidt
- Department of Food Microbiology, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstraße 28, 70599, Stuttgart, Germany
| | - Bożena Szermer-Olearnik
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 R. Weigl St, Wroclaw, 53114, Poland
| | - Sascha Venturelli
- Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany
- Department of Vegetative and Clinical Physiology, Institute of Physiology, University of Tuebingen, Wilhelmstraße 56, 72074, Tuebingen, Germany
| |
Collapse
|
3
|
Zhou S, Liu X, Cui Y, Chen S, Zhong F, Lu J, Kong C. Molecular investigation of soybean protein for improving the stability of quinoa (Chenopodium quinoa willd.) milk substitute. Food Chem 2024; 461:140829. [PMID: 39146685 DOI: 10.1016/j.foodchem.2024.140829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/24/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
Soybean could greatly improve stability of quinoa milk substitute. However, the key compound and underlying mechanisms remained unclear. Here we showed that soybean protein was the key component for improving quinoa milk substitute stability but not oil or okara. Supplementary level of soybean protein at 0%, 2%, 4%, and 8% of quinoa (w/w) was optimized. Median level at 4% could effectively enhance physical stability, reduce particle size, narrow down particle size distribution, and decrease apparent viscosity of quinoa milk substitute. Microscopic observation further confirmed that soybean protein could prevent phase separation. Besides, soybean protein showed increased surface hydrophobicity. Molecular docking simulated that soybean protein but not quinoa protein, could provide over 10 anchoring points for the most abundant quinoa vanillic acid, through hydrogen bond and Van-der-Waals. These results contribute to improve stability of quinoa based milk substitute, and provide theoretical basis for the interaction of quinoa phenolics and soybean protein.
Collapse
Affiliation(s)
- Sumei Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Xinghao Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Yajun Cui
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Siyi Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Fang Zhong
- Science Center for Future Food, Jiangnan University, Wuxi 214122, China
| | - Jing Lu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Chunli Kong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
4
|
Huang C, Wang Y, Zhou C, Fan X, Sun Q, Han J, Hua C, Li Y, Niu Y, Emeka Okonkwo C, Yao D, Song L, Otu P. Properties, extraction and purification technologies of Stevia rebaudiana steviol glycosides: A review. Food Chem 2024; 453:139622. [PMID: 38761729 DOI: 10.1016/j.foodchem.2024.139622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
For health and safety reasons, the search for green, healthy, and low-calorie sweeteners with good taste has become the demand of many consumers. Furthermore, the need for sugar substitutes of natural origin has increased dramatically. In this review, we briefly discussed the safety and health benefits of stevia sweeteners and enumerated some examples of physiological functions of steviol glycosides (SGs), such as anti-inflammatory, anti-obesity, antihypertensive, anti-diabetes, and anticaries, citing various evidence related to their application in the food industry. The latest advances in emerging technologies for extracting and purifying SGs and the process variables and operational strategies were discussed. The impact of the extraction methods and their comparison against the conventional techniques have also been demonstrated. These technologies use minimal energy solvents and simplify subsequent purification stages, making viable alternatives suitable for a possible industrial application. Furthermore, we also elucidated the potential for advancing and applying the natural sweeteners SGs.
Collapse
Affiliation(s)
- Chengxia Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yang Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Xingyu Fan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Qiaolan Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jingyi Han
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Chenhui Hua
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yao Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yunwei Niu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Clinton Emeka Okonkwo
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Deyang Yao
- Jiangsu Teweinong Food Co., Ltd., Xinghua 225700, PR China
| | - Linglin Song
- Jiangsu Teweinong Food Co., Ltd., Xinghua 225700, PR China
| | - Phyllis Otu
- Accra Technical University, P. O. Box GP 561, Barnes Road, Accra, Ghana
| |
Collapse
|
5
|
Servant G, Kenakin T. A Pharmacological perspective on the temporal properties of sweeteners. Pharmacol Res 2024; 204:107211. [PMID: 38744400 DOI: 10.1016/j.phrs.2024.107211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Several non-caloric sweeteners exhibit a delay in sweetness onset and a sweetness linger after sampling. These temporal properties are thought to be the result of non-specific interactions with cell membranes and proteins in the oral cavity. Data and analysis presented in this report also support the potential involvement of receptor affinity and binding kinetics to this phenomenon. In general, affected sweeteners exhibit distinctly higher binding affinity compared to carbohydrate sweeteners, which do not have temporal issues. In addition, binding kinetic simulations illustrate much slower receptor binding association and dissociation kinetics for a set of non-caloric sweeteners presenting temporal issues, in comparison to carbohydrate sweeteners. So, the higher affinity of some non-caloric sweeteners, dictating lower use levels, and affecting binding kinetics, could contribute to their delay and linger in sweetness perception. Simple pharmacology principles could explain, at least in part, some of the temporal issues of sweeteners.
Collapse
Affiliation(s)
- Guy Servant
- dsm-firmenich, 10636 Scripps Summit Court #201, San Diego, CA 92131, USA.
| | - Terry Kenakin
- Department of Pharmacology, University of North Carolina School of Medicine, 120 Mason Farm Rd., 4042 Genetic Medicine CB #7365, Chapel Hill, NC 27599, USA
| |
Collapse
|
6
|
Liu Y, Wu Z, Chen Y, Guan Y, Guo H, Yang M, Yue P. Rubusoside As a Multifunctional Stabilizer for Novel Nanocrystal-Based Solid Dispersions with a High Drug Loading: A Case Study. J Pharm Sci 2024; 113:699-710. [PMID: 37659720 DOI: 10.1016/j.xphs.2023.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 09/04/2023]
Abstract
The oral bioavailability of poorly soluble drugs has always been the focus of pharmaceutical researchers. We innovatively combined nanocrystal technology and solid dispersion technology to prepare novel nanocrystalline solid dispersions (NCSDs), which enable both the solidification and redispersion of nanocrystals, offering a promising new pathway for oral delivery of insoluble Chinese medicine ingredients. The rubusoside (Rub) was first used as the multifunctional stabilizer of novel apigenin nanocrystal-based solid dispersions (AP-NSD), improving the in vitro solubilization rate of the insoluble drug apigenin(AP). AP-NSD has been produced using a combination of homogenisation and spray-drying technology. The effects of stabilizer type and concentration on AP nanosuspensions (AP-NS) particles, span, and zeta potential were studied. And the effects of different types of protective agents on the yield and redispersibility of AP-NSD were also studied. Furthermore, AP-NSD was characterized by infrared spectroscopy (IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and powder X-ray diffraction (PXRD). Solubility was used to assess the in vitro dissolution of AP-NSD relative to APIs and amorphous solid dispersions (AP-ASD), and AP-ASD was prepared by the solvent method. The results showed that 20% Rub stabilized AP-NSD exhibited high drug-loading and good redispersibility and stability, and higher in vitro dissolution rate, which may be related to the presence of Rub on surface of drug. Therefore provides a natural and safe option for the development of formulations for insoluble drugs.
Collapse
Affiliation(s)
- Yang Liu
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang 330004, China
| | - Zhenfeng Wu
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang 330004, China
| | - Yingchong Chen
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang 330004, China
| | - Yongmei Guan
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang 330004, China
| | - Huiwen Guo
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang 330004, China
| | - Ming Yang
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang 330004, China
| | - Pengfei Yue
- Key Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang 330004, China.
| |
Collapse
|
7
|
Wang F, Ma R, Zhu J, Zhan J, Li J, Tian Y. Physicochemical properties, in vitro digestibility, and pH-dependent release behavior of starch-steviol glycoside composite hydrogels. Food Chem 2024; 434:137420. [PMID: 37696154 DOI: 10.1016/j.foodchem.2023.137420] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/29/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023]
Abstract
Steviol glycosides possess Bola-form amphiphilic structure, which can solubilize hydrophobic phytochemicals and exert physical modification to the hydrophilic matrix. However, the effect of steviol glycosides on the starch hydrogel is still unclear. Herein, the physicochemical properties, in vitro digestibility, and release behavior of starch hydrogel in the presence of steviol glycosides were investigated. The results showed that the addition of steviol glycosides promoted the gelatinization and gelation of starch, and endowed the starch hydrogel with softer texture, larger volume, and higher water holding capacity. The hydrophobic curcumin was well integrated into hydrogel by steviol glycosides, providing the gel with improved colour brilliance. The introduction of steviol glycosides hardly affected the digestibility of starch gel, but it promoted the release rate of curcumin. Notably, this release behavior was pH dependent, which tended to target the alkaline intestine. This work provided some theoretical supports for the development of sugar-free starchy foods.
Collapse
Affiliation(s)
- Fan Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Rongrong Ma
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Jingling Zhu
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore; NUS Environmental Research Institute (NERI), National University of Singapore, 5 A Engineering Drive 1, Singapore 117411, Singapore
| | - Jinling Zhan
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, PR China
| | - Jun Li
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore; NUS Environmental Research Institute (NERI), National University of Singapore, 5 A Engineering Drive 1, Singapore 117411, Singapore.
| | - Yaoqi Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
8
|
Kämäräinen T, Kadota K, Arima-Osonoi H, Uchiyama H, Tozuka Y. Tailoring the Self-Assembly of Steviol Glycoside Nanocarriers with Steroidal Amphiphiles. ACS Biomater Sci Eng 2023; 9:5747-5760. [PMID: 37748027 DOI: 10.1021/acsbiomaterials.3c01264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Bile salts are biosurfactants that can induce structure transformations in supramolecular nanoassemblies with conventional surfactants owing to their unique, planar amphiphilic character and the rigidity of their hydrophobic steroid skeleton. However, structural information about the association of bile salts and amphiphilic glycosides is lacking. In this work, we investigated the micelle structure of two anionic di- and trihydroxy bile salts [sodium deoxycholate (SDC) and sodium cholate (SC)] and a conventional anionic surfactant [sodium dodecyl sulfate (SDS)] in mixtures with a nonionic steviol glycoside [α-glucosyl stevia (Stevia-G)] and studied their potential as a nanocarrier system for two poorly water-soluble drugs (clotrimazole and ketoconazole). Decreased critical micelle concentrations determined from surface tension measurements demonstrate synergistic interactions between Stevia-G and SDS/SDC/SC in a decreasing order. Small-angle X-ray and neutron scattering, interpreted by a core-shell ellipsoid model, indicate that SDS and bile salts act differently on the mixed micelle structure. Compared with SDS/Stevia-G, bile salt/Stevia-G had a core-shell structure more similar to that of pure Stevia-G micelles. SDC and SDS had an increasing and decreasing influence, respectively, on the available molecular surface area in mixtures with Stevia-G on the micelle core but a similar influence on the micelle shell solvation number relative to that of their pure micellar structures. The number of bile salt hydroxyl groups was influential in determining the micelle stoichiometry: an increasing number of hydroxyl groups corresponded to decreasing bile salt aggregation numbers and a smaller hydrophobic micellar core. The core volume was the most important structural factor in explaining the drug solubilization capacity of the nanocarrier systems. Therefore, bile salt-steviol glycoside mixed micellar assemblies exhibit structure control mechanisms allowing the fine-tuning of their interior hydrophobic domains important for nanocarrier applications toward solubilization of poorly water-soluble drugs.
Collapse
Affiliation(s)
- Tero Kämäräinen
- Department of Formulation Design and Pharmaceutical Technology, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Kazunori Kadota
- Department of Formulation Design and Pharmaceutical Technology, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Hiroshi Arima-Osonoi
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society, Tokai, Ibaraki 319-1106, Japan
| | - Hiromasa Uchiyama
- Department of Formulation Design and Pharmaceutical Technology, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Yuichi Tozuka
- Department of Formulation Design and Pharmaceutical Technology, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| |
Collapse
|
9
|
Sun P, Sun W, Wei Z, Wu S, Xiang N. Soy protein nanoparticles prepared by enzymatic cross-linking with enhanced emulsion stability. SOFT MATTER 2023; 19:2099-2109. [PMID: 36857685 DOI: 10.1039/d2sm01461k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Particle-stabilized emulsions have shown increasing potential application in food emulsion systems. Here, soy protein, an abundant and inexpensive plant-based protein, was used to develop nanoparticles for emulsion stabilizer applications. An enzymatic cross-linking method based on microbial transglutaminase (mTG) was developed for the fabrication of soy protein nanoparticles (SPNPs). The emulsion stability was compared between soy protein isolate (SPI) and three different nanoparticles. The size of SPNPs ranged from 10 nm to 40 nm, depending on the production conditions. The emulsions stabilized by SPNPs were stable for at least 20 days at room temperature, whereas the emulsion that was stabilized by SPI showed a significant creaming and phase separation phenomenon. The SPNPs also showed a higher antioxidant and reducing effect compared to SPI. The use of mTG induced cross-linking resulted in the formation of covalent bonding between protein molecules, and led to the formation of nanoparticles with higher stability. The approaches support the utilization of inexpensive and abundant plant-based resources as emulsion stabilizers in food applications.
Collapse
Affiliation(s)
- Peilong Sun
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, 310014, P. R. China
| | - Weijun Sun
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Zhengxun Wei
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, 310014, P. R. China
| | - Sihong Wu
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Ning Xiang
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, 310014, P. R. China
| |
Collapse
|
10
|
Wang Y, Luo X, Chen L, Mustapha AT, Yu X, Zhou C, Okonkwo CE. Natural and low-caloric rebaudioside A as a substitute for dietary sugars: A comprehensive review. Compr Rev Food Sci Food Saf 2023; 22:615-642. [PMID: 36524621 DOI: 10.1111/1541-4337.13084] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 10/12/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022]
Abstract
For health and safety concerns, traditional high-calorie sweeteners and artificial sweeteners are gradually replaced in food industries by natural and low-calorie sweeteners. As a natural and high-quality sugar substitute, steviol glycosides (SvGls) are continually scrutinized regarding their safety and application. Recently, the cultivation of organic stevia has been increasing in many parts of Europe and Asia, and it is obvious that there is a vast market for sugar substitutes in the future. Rebaudioside A, the main component of SvGls, is gradually accepted by consumers due to its safe, zero calories, clear, and sweet taste with no significant undesirable characteristics. Hence, it can be used in various foods or dietary supplements as a sweetener. In addition, rebaudioside A has been demonstrated to have many physiological functions, such as antihypertension, anti-diabetes, and anticaries. But so far, there are few comprehensive reviews of rebaudioside A. In this review article, we discuss the physicochemical properties, metabolic process, safety, regulatory, health benefits, and biosynthetic pathway of rebaudioside A and summarize the modification methods and state-of-the-art production and purification techniques of rebaudioside A. Furthermore, the current problems hindering the future production and application of rebaudioside A are analyzed, and suggestions are provided.
Collapse
Affiliation(s)
- Yang Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xiang Luo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Li Chen
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | | | - Xiaojie Yu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Clinton Emeka Okonkwo
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University (UAEU), Al Ain, United Arab Emirates.,Department of Agricultural and Biosystems Engineering, College of Engineering, Landmark University, Omu-Aran, Kwara State, Nigeria
| |
Collapse
|
11
|
Zhang T, Myint KZ, Xia Y, Wu J. A comparative study on physicochemical and micellar solubilization performance between monoglucosyl rebaudioside A and rebaudioside A. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2651-2659. [PMID: 34687452 DOI: 10.1002/jsfa.11604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/10/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Rebaudioside A (RA) and its monoglucosyl derivative, as like rebaudioside D (RD) are the most popular stevia glycosides but possess poor solubility in water, which limited their application as edible surfactants, the applications as in micellar solubilization and drug delivery. Meanwhile, effect of the monoglucosyl attached to RA moiety remains unclear. RESULTS Monoglucosyl rebaudioside A (RAG1) was synthesized via hydrolyzing the transglycosylation product of RA with 95% of RA converted. RAG1 content in raw reaction mixture was as high as 69.5% of total glycosides, and harvested with a content of 88.2% by simple filtration. The RAG1 exhibited an aqueous solubility of 87 folds of RA or 391 folds of RD at 25 °C. The surface activity of RAG1 solution was higher than RA and invincible to RD. The RAG1 micelles promoted aqueous solubility of idebenone (IDE) up to 500 folds higher at 25 °C. The cumulative release rate of IDE encapsulated in RAG1 micelles was 777.5% or 456.7% higher of that of free IDE in simulated gastric/intestinal fluids in 14 h, respectively. The RAG1-IDE remained the same in 98 days at 25 °C. CONCLUSION The α-linked glucosyl to RA induced higher hydrophilicity and surface activity than that resulted by β-linked glucosyl, making RAG1 not only dramatically raise the aqueous solubility of RA, but also endow IDE folds higher in bioaccessibility, yet making the capsule stable at storage. The results would provide a new edible delivery nanocarrier for encapsulation of hydrophobic bioactive components. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tongtong Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Chemical and Materials Engineering, Jiangnan University, Wuxi, China
| | - Khaing Zar Myint
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Chemical and Materials Engineering, Jiangnan University, Wuxi, China
| | - Yongmei Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Chemical and Materials Engineering, Jiangnan University, Wuxi, China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
12
|
Xu Y, Song J, Dai Z, Niu L, Dajing L, Wu C. Study on physicochemical characteristics of lutein nanoemulsions stabilized by chickpea protein isolate-stevioside complex. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1872-1882. [PMID: 34498276 DOI: 10.1002/jsfa.11524] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/11/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Chickpea protein isolate (CPI) originating from chickpeas has the advantages of facilitating the stability of food emulsions. Stevioside (STE) exhibits a notable surface activity and can improve the water solubility of numerous hydrophobic nutrients. STE and protein mixtures show great potential as emulsions stabilizers. The present study aimed to prepare a novel nanoemulsion for encapsulating lutein (LUT) by ultrasonic homogenization using chickpea protein isolate-stevioside complex (CPI-STE) as a stabilizer and also to investigate the physicochemical characteristics. RESULTS The results obtained showed that different preparation conditions demonstrated significant influences on the physicochemical properties of CPI-STE-LUT nanoemulsions. Under the optimal condition, the average particle size of CPI-STE-LUT nanoemulsions was 195.1 nm, and the emulsifying and encapsulation efficiencies of lutein were 91.04% and 87.56%, respectively. CPI-STE-LUT nanoemulsions stabilized by CPI-STE could significantly increase the emulsifying and encapsulation efficiencies of lutein compared to that stabilized by CPI. Fourier transform infrared spectroscopy revealed that hydrogen bond was the main binding force of CPI and lutein, and there was a covalent bond between the two molecules. Furthermore, the stability of CPI-STE-LUT nanoemulsions in gastrointestinal phase was higher than that of CPI-LUT nanoemulsions, which could load lutein more effectively and be more resistant to digestive enzymes. CONCLUSION The present study reports the physicochemical characterization of CPI-STE-LUT nanoemulsions for the first time. CPI-STE-LUT nanoemulsions were characterized by a small average particle size lower than 200 nm, as well as high emulsifying and encapsulation efficiencies, and good stability. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yayuan Xu
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jiangfeng Song
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhuqing Dai
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Liying Niu
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Li Dajing
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Caie Wu
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
13
|
CMC determination using isothermal titration calorimetry for five industrially significant non-ionic surfactants. Colloids Surf B Biointerfaces 2022; 211:112320. [PMID: 35042120 DOI: 10.1016/j.colsurfb.2022.112320] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 11/20/2022]
Abstract
Surfactants are used in a vast array of products including pharmaceuticals, cosmetics and household formulations. From an industrial perspective, non-ionic surfactants are ideal for inclusion within such products as they are non-toxic, simple to formulate and economic to use. This study considers five non-ionic surfactants (Tween 20, Tween 80, Crodasol, Croduret and Etocas 35) to determine the critical micellar concentration (CMC) for each using isothermal titration calorimetry, thus avoiding issues regarding poor accuracy found with other techniques. Furthermore, this methodology has not previously been applied to this group of surfactants. For the most commonly used non-ionics (Tween 20 and Tween 80) a further study was undertaken to consider the influence of surfactant purity on the CMC determined, using standard grade (Tween 20 and 80), high purity (Tween 20 HP and Tween 80 HP) and Super Refined (SR PS20 and SR PS80). Results permitted calculation of the CMC for the surfactants whereupon the values were determined to range from 1.0 mM for Tween 20 HP to 2.9 mM for Tween 80 HP. Such information regarding the CMC event is useful from a formulation perspective as it can ensure that the most optimum concentration of surfactant is included within a formulation to maximize its efficacy.
Collapse
|
14
|
Zhang W, Boateng ID, Zhang W, Jia S, Wang T, Huang L. Effect of ultrasound-assisted ionic liquid pretreatment on the structure and interfacial properties of soy protein isolate. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.02.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
Yang Y, Xu M, Wan Z, Yang X. Novel functional properties and applications of steviol glycosides in foods. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2021.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
FERREIRA LDOSSANTOS, BRITO-OLIVEIRA TCARVALHO, PINHO SCDE. Brazil nut (Bertholletia excelsa) oil emulsions stabilized with thermally treated soy protein isolate for vitamin D3 encapsulation. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.17521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Ko JA, Ryu YB, Lee WS, Ameer K, Kim YM. Optimization of Microwave-Assisted Green Method for Enhanced Solubilization of Water-Soluble Curcuminoids Prepared Using Steviol Glycosides. Foods 2021; 10:foods10112803. [PMID: 34829084 PMCID: PMC8619202 DOI: 10.3390/foods10112803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/27/2022] Open
Abstract
In this study, the optimization and modeling of microwave-assisted extraction (MAE) of water-soluble curcuminoids prepared using novel steviol glycosides (SGs) was carried out using four independent process variables at varying levels-X1: microwave power (50-200 W), X2: stevioside concentration (50-200 mg/mL), X3: curcumin concentration (20-200 mg/mL), and X4: time (1-10 min)-in response surface methodology configuration. Moreover, the effects of stevioside, as the most cost-effective natural solubilizer, were also evaluated. The water solubility of curcuminoids increased from 11 to 1320 mg/L with the addition of stevioside as a natural solubilizer. Moreover, microwave heating synergistically with stevioside addition significantly (p < 0.05) increased the solubility up to 5400 mg/L. Based on the results, the optimum conditions providing the maximum solubilization of 16,700 mg/L were 189 W microwave power, 195 g/L stevioside concentration, 183 g/L curcuminoid concentration, and 9 min of incubation time. Moreover, MAE of curcuminoids using SGs might render a significant advantage for its wide-scale application to solubilizing the multitude of insoluble functional flavonoids in fruits, plants, and food materials.
Collapse
Affiliation(s)
- Jin-A Ko
- Department of Food Science and Technology, Chonnam National University, Gwangju 61186, Korea;
| | - Young-Bae Ryu
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si 56212, Korea; (Y.-B.R.); (W.-S.L.)
| | - Woo-Song Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si 56212, Korea; (Y.-B.R.); (W.-S.L.)
| | - Kashif Ameer
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha 40100, Pakistan
- Correspondence: (K.A.); (Y.-M.K.); Tel./Fax: +92-62-530-2142 (ext. 2149) (K.A.); +82-62-530-2142 (ext. 2149) (Y.-M.K.)
| | - Young-Min Kim
- Department of Food Science and Technology, Chonnam National University, Gwangju 61186, Korea;
- Correspondence: (K.A.); (Y.-M.K.); Tel./Fax: +92-62-530-2142 (ext. 2149) (K.A.); +82-62-530-2142 (ext. 2149) (Y.-M.K.)
| |
Collapse
|
18
|
Light K, Karboune S. Emulsion, hydrogel and emulgel systems and novel applications in cannabinoid delivery: a review. Crit Rev Food Sci Nutr 2021; 62:8199-8229. [PMID: 34024201 DOI: 10.1080/10408398.2021.1926903] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Emulsions, hydrogels and emulgels have attracted a high interest as tools for the delivery of poorly soluble hydrophobic nutraceuticals by enhancing their stability and bioavailability. This review provides an overview of these delivery systems, their unique qualities and their interactions with the human gastrointestinal system. The modulation of the various delivery systems to enhance the bioavailability and modify the release profile of bioactive encapsulates is highlighted. The application of the delivery systems in the delivery of cannabinoids is also discussed. With the recent increase of cannabis legalization across North America, there is much interest in developing cannabis edibles which can provide a consistent dose of cannabinoids per portion with a rapid time of onset. Indeed, the long time of onset of psychoactive effects and varied metabolic responses to these products result in a high risk of severe intoxication due to overconsumption. Sophisticated emulsion or hydrogel-based delivery systems are one potential tool to achieve this goal. To date, there is a lack of evidence linking specific classes of delivery systems with their pharmacokinetic profiles in humans. More research is needed to directly compare different classes of delivery systems for the gastrointestinal delivery of cannabinoids.
Collapse
Affiliation(s)
- Kelly Light
- Department of Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, Canada
| | - Salwa Karboune
- Department of Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, Canada
| |
Collapse
|