1
|
Sun Y, Jia Y, Wang K, Wang S, Cui B, Mao C, Guo X, Feng Y, Fu H, Chen X, Wang Y, Zhang Z, Wang Y. The exploration of pasteurization processes and mechanisms of inactivation of Bacillus cereus ATCC 14579 using radio frequency energy. Int J Food Microbiol 2025; 426:110919. [PMID: 39321599 DOI: 10.1016/j.ijfoodmicro.2024.110919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/02/2024] [Accepted: 09/15/2024] [Indexed: 09/27/2024]
Abstract
Radio frequency (RF) heating has been utilized to investigate sterilization techniques, but the mechanism of sterilization via RF heating, particularly on Bacillus cereus (B. cereus), has not been thoroughly examined. In this paper, sterilization processes and potential bactericidal mechanisms of B. cereus using RF were investigated. The best heating and sterilization efficiency was achieved at (Electrode gap 130 mm, conductivity of bacterial suspension 0.1 S/m, volume of bacterial suspension 40 mL). Heating a suspension of B. cereus to 90 °C in 80 s using RF reduced the number of viable bacteria by 4.87 logarithms. At the cellular level, there was a significant leakage of nucleic acids and proteins from the bacterial cells. Additionally, the integrity of the cell membrane was severely damaged, with a decrease in ATP concentration of 2.08 mM, Na, K-ATPase activity to 10.7 (U/109 cells), and Ca, Mg-ATPase activity to 11.6 (U/109 cells). At the molecular level, transcriptomics analysis showed that RF heating of B. cereus to 65 °C produced 650 more differentially expressed genes (DEGs) compared with RF heating to 45 °C. The GO annotation analysis indicated that the majority of differentially expressed genes (DEGs) were predominantly associated with cellular components. KEGG metabolic analysis showed enrichment in microbial metabolism in diverse environments, etc. This study investigated the potential bactericidal mechanism of B. cereus using RF, and provided some theoretical basis for the research of the sterilization of B. cereus.
Collapse
Affiliation(s)
- Yanan Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia Hui Autonomous Region 750000, PR China
| | - Yiming Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Ke Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Songlei Wang
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia Hui Autonomous Region 750000, PR China
| | - Baozhong Cui
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Chao Mao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Xiaoying Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yuxin Feng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Hongfei Fu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Xiangwei Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yequn Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Zhenna Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yunyang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
2
|
Chen X, Li F, Tang J, Shi H, Xie J, Jiao Y. Temperature uniformity of frozen pork with various combinations of fat and lean portions tempered in radio frequency. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
3
|
Thermal and Dielectric Properties of Wolfberries as Affected by Moisture Content and Temperature Associated with Radio Frequency and Microwave Dehydrations. Foods 2022; 11:foods11233796. [PMID: 36496604 PMCID: PMC9738072 DOI: 10.3390/foods11233796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022] Open
Abstract
Knowledge of the thermal and dielectric properties of wolfberries is essential for understanding the heat transfer and the interaction between the electromagnetic field (10-3000 MHz) and the sample during radio frequency (RF) and microwave (MW) drying. The thermal and dielectric properties of wolfberries were determined as influenced by moisture content from 15.1% to 75.2%, w.b.) and temperature from 25 to 85 °C. The results showed that as the moisture content increased from 15.1% to 75.2% (w.b.), the true density of wolfberries decreased, but the specific heat capacity and thermal conductivity increased with increasing temperature and moisture content. The dielectric properties (DPs) of wolfberries decreased with increasing frequency from 10 to 3000 MHz. The dielectric constant increased with increasing temperature at lower a moisture content (below 45% w.b.) but decreased with increasing temperature at a high moisture content (above 60% w.b.). The cubic and quadratic polynomial models (R2 = 0.977 - 0.997) were best for fitting the dielectric constant and loss factor at four representative frequencies of 27, 40, 915, and 2450 MHz, respectively. The penetration depth increased with the decreased frequency, temperature, and moisture content, and was greater at RF frequencies than MW range, making the RF heating more effective for drying bulk wolfberries. These findings offered essential data before optimizing RF or MW dehydration protocols for wolfberries via computer simulation.
Collapse
|
4
|
Du X, Wang B, Li H, Liu H, Shi S, Feng J, Pan N, Xia X. Research progress on quality deterioration mechanism and control technology of frozen muscle foods. Compr Rev Food Sci Food Saf 2022; 21:4812-4846. [PMID: 36201389 DOI: 10.1111/1541-4337.13040] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 01/28/2023]
Abstract
Freezing can prolong the shelf life of muscle foods and is widely used in their preservation. However, inevitable quality deterioration can occur during freezing, frozen storage, and thawing. This review explores the eating quality deterioration characteristics (color, water holding capacity, tenderness, and flavor) and mechanisms (irregular ice crystals, oxidation, and hydrolysis of lipids and proteins) of frozen muscle foods. It also summarizes and classifies the novel physical-field-assisted-freezing technologies (high-pressure, ultrasound, and electromagnetic) and bioactive antifreeze (ice nucleation proteins, antifreeze proteins, natural deep eutectic solvents, carbohydrate, polyphenol, phosphate, and protein hydrolysates), regulating the dynamic process from water to ice. Moreover, some novel thermal and nonthermal thawing technologies to resolve the loss of water and nutrients caused by traditional thawing methods were also reviewed. We concluded that the physical damage caused by ice crystals was the primary reason for the deterioration in eating quality, and these novel techniques promoted the eating quality of frozen muscle foods under proper conditions, including appropriate parameters (power, time, and intermittent mode mentioned in ultrasound-assisted techniques; pressure involved in high-pressure-assisted techniques; and field strength involved in electromagnetic-assisted techniques) and the amounts of bioactive antifreeze. To obtain better quality frozen muscle foods, more efficient technologies and substances must be developed. The synergy of novel freezing/thawing technology may be more effective than individual applications. This knowledge may help improve the eating quality of frozen muscle foods.
Collapse
Affiliation(s)
- Xin Du
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Bo Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Haijing Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Shuo Shi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Jia Feng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Nan Pan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
5
|
Temperature and Moisture Dependent Dielectric and Thermal Properties of Walnut Components Associated with Radio Frequency and Microwave Pasteurization. Foods 2022; 11:foods11070919. [PMID: 35407005 PMCID: PMC8997614 DOI: 10.3390/foods11070919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/13/2022] [Accepted: 03/20/2022] [Indexed: 02/01/2023] Open
Abstract
To provide necessary information for further pasteurization experiments and computer simulations based on radio frequency (RF) and microwave (MW) energy, dielectric and thermal properties of walnut components were measured at frequencies between 10 and 3000 MHz, temperatures between 20 and 80 °C, and moisture contents of whole walnuts between 8.04% and 20.01% on a dry basis (d.b.). Results demonstrated that dielectric constants and loss factors of walnut kernels and shells decreased dramatically with raised frequency within the RF range from 10 to 300 MHz, but then reduced slightly within the MW range from 300 to 3000 MHz. Dielectric constant, loss factor, specific heat capacity, and thermal conductivity increased with raised temperature and moisture content. Dielectric loss factors of kernels were greater than those of shells, leading to a higher RF or MW heating rate. Penetration depth of electromagnetic waves in walnut components was found to be greater at lower frequencies, temperatures, and moisture contents. The established regression models with experimental results could predict both dielectric and thermal properties with large coefficients of determination (R2 > 0.966). Therefore, this study offered essential data and effective guidance in developing and optimizing RF and MW pasteurization techniques for walnuts using both experiments and mathematical simulations.
Collapse
|
6
|
Han R, He J, Chen Y, Li F, Shi H, Jiao Y. Effects of Radio Frequency Tempering on the Temperature Distribution and Physiochemical Properties of Salmon ( Salmo salar). Foods 2022; 11:foods11060893. [PMID: 35327315 PMCID: PMC8953369 DOI: 10.3390/foods11060893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 01/27/2023] Open
Abstract
Salmon (Salmo salar) is a precious fish with high nutritional value, which is perishable when subjected to improper tempering processes before consumption. In traditional air and water tempering, the medium temperature of 10 °C is commonly used to guarantee a reasonable tempering time and product quality. Radio frequency tempering (RT) is a dielectric heating method, which has the advantage of uniform heating to ensure meat quality. The effects of radio frequency tempering (RT, 40.68 MHz, 400 W), water tempering (WT + 10 °C, 10 ± 0.5 °C), and air tempering (AT + 10 °C, 10 ± 1 °C) on the physiochemical properties of salmon fillets were investigated in this study. The quality of salmon fillets was evaluated in terms of drip loss, cooking loss, color, water migration and texture properties. Results showed that all tempering methods affected salmon fillet quality. The tempering times of WT + 10 °C and AT + 10 °C were 3.0 and 12.8 times longer than that of RT, respectively. AT + 10 °C produced the most uniform temperature distribution, followed by WT + 10 °C and RT. The amount of immobile water shifting to free water after WT + 10 °C was higher than that of RT and AT + 10 °C, which was in consistent with the drip and cooking loss. The spaces between the intercellular fibers increased significantly after WT + 10 °C compared to those of RT and AT + 10 °C. The results demonstrated that RT was an alternative novel salmon tempering method, which was fast and relatively uniform with a high quality retention rate. It could be applied to frozen salmon fillets after receiving from overseas catches, which need temperature elevation for further cutting or consumption.
Collapse
Affiliation(s)
- Rong Han
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (R.H.); (J.H.); (Y.C.); (F.L.); (H.S.)
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai 201306, China
| | - Jialing He
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (R.H.); (J.H.); (Y.C.); (F.L.); (H.S.)
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai 201306, China
| | - Yixuan Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (R.H.); (J.H.); (Y.C.); (F.L.); (H.S.)
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai 201306, China
| | - Feng Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (R.H.); (J.H.); (Y.C.); (F.L.); (H.S.)
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai 201306, China
| | - Hu Shi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (R.H.); (J.H.); (Y.C.); (F.L.); (H.S.)
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai 201306, China
| | - Yang Jiao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (R.H.); (J.H.); (Y.C.); (F.L.); (H.S.)
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai 201306, China
- Correspondence: ; Tel.: +86-21-6190-8758
| |
Collapse
|
7
|
Effects of magnetic nanometer combined with radio frequency or microwave thawing on physicochemical properties of myofibrillary protein in sea bass. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Zeng S, Li M, Li G, Lv W, Liao X, Wang L. Innovative applications, limitations and prospects of energy-carrying infrared radiation, microwave and radio frequency in agricultural products processing. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Yang Y, Qiu W, Tao N, Jin Y, Feng Y, Jin Y. Effect of ratio of oil to sample on the quality of fried fish (
Pseudorasbora parva
). J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Yaochong Yang
- Engineering Research Center of Food Thermal‐processing Technology Shanghai Ocean University Shanghai China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, College of Food Science and Technology Shanghai Ocean University Shanghai China
| | - Weiqiang Qiu
- National Experimental Teaching Demonstration Center for Food Science and Engineering, College of Food Science and Technology Shanghai Ocean University Shanghai China
| | - Ningping Tao
- National Experimental Teaching Demonstration Center for Food Science and Engineering, College of Food Science and Technology Shanghai Ocean University Shanghai China
| | - Yingshan Jin
- College of Bioscience and Technology Yangzhou University Yangzhou China
| | - Yuhui Feng
- Jilin Tobacco Industry Co., Ltd. Jilin China
| | - Yinzhe Jin
- Engineering Research Center of Food Thermal‐processing Technology Shanghai Ocean University Shanghai China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, College of Food Science and Technology Shanghai Ocean University Shanghai China
| |
Collapse
|
10
|
Llave Y, Erdogdu F. Radio frequency processing and recent advances on thawing and tempering of frozen food products. Crit Rev Food Sci Nutr 2020; 62:598-618. [PMID: 32960080 DOI: 10.1080/10408398.2020.1823815] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
During radio frequency (RF) thawing-tempering (defrosting) of frozen food products, some regions, mostly along the corners and edges, heat-thaw first due to the strong interaction of electric field and evolved heating leading to temperature increase. Resulting higher power absorption along these regions, compared to the rest of the volume, is the major cause of this problem. Besides, increase in temperature with phase change results in a significant increase of dielectric properties. This situation leads to runaway heating, which triggers the non-uniform temperature distribution in an accelerated manner. All these power absorption and temperature non-uniformity-based changes lead to significant quality changes, drip losses, and microbial growth. Based on this background, the objective of this review was to provide a comprehensive background regarding the most relevant and novel defrosting application studies using RF process, dielectric property data for frozen foods in the RF band, and novel mathematical modeling based computer simulation approaches to achieve a uniform process. Experimental and modeling studies were related with electrode position, sample geometry and size, electrode gap of the applied RF process, and the potential of charged electrode. Applying translational and rotational movement of the food product and the charged electrode vertical movement during the process to adjust the electric field and use of two-cavity systems and curved electrodes were also explained in detail. The data presented in this review is expected to give an insight information for further development of innovative RF thawing/tempering systems.
Collapse
Affiliation(s)
- Yvan Llave
- Department of Agro-Food Science, Niigata Agro-Food University, Niigata, Japan
| | - Ferruh Erdogdu
- Department of Food Engineering, Ankara University, Ankara, Turkey
| |
Collapse
|