1
|
Alibrahem W, Nguyen DHH, Kharrat Helu N, Tóth F, Nagy PT, Posta J, Prokisch J, Oláh C. Health Benefits, Applications, and Analytical Methods of Freshly Produced Allyl Isothiocyanate. Foods 2025; 14:579. [PMID: 40002023 PMCID: PMC11853810 DOI: 10.3390/foods14040579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/27/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Allyl isothiocyanate (AITC) is a low-molecular-weight natural chemical predominantly obtained from the autolysis of sinigrin, a glucosinolate found in cruciferous vegetables like mustard, horseradish, and wasabi. AITC has sparked widespread interest due to its various biological actions, which include strong antioxidant, anti-inflammatory, antibacterial, and anticancer capabilities. This compound offers promising potential in several fields, particularly in food preservation, medicine, and enhancing food quality through natural means. AITC's effectiveness against a broad spectrum of microorganisms, including foodborne pathogens and spoilage agents, makes it an attractive natural alternative to synthetic preservatives. The potential to extend the shelf life of perishable foods makes AITC an important tool for food production, meeting rising customer demand for natural additives. In addition to its antimicrobial effects, AITC demonstrates significant anti-inflammatory activity, reducing levels of pro-inflammatory cytokines and modulating key signaling pathways, which could make it valuable in managing chronic inflammatory conditions. Furthermore, emerging research highlights its potential in cancer prevention and treatment, as AITC has been demonstrated to induce apoptosis and inhibit cell increase in several cancer cell lines, offering a natural approach to chemoprevention. This review delves into the chemical structure, metabolism, and bioavailability of freshly produced AITC, providing a comprehensive overview of its beneficial properties. Challenges related to AITC's volatility, dosage optimization, and regulatory considerations are also discussed, alongside future research directions to enhance the stability and efficacy of AITC-based formulations. The findings underscore AITC's role as a versatile bioactive compound with known potential to support human health and the sustainable food industry.
Collapse
Affiliation(s)
- Walaa Alibrahem
- Doctoral School of Health Sciences, University of Debrecen, Egyetem tér 1, 4028 Debrecen, Hungary;
| | - Duyen H. H. Nguyen
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary; (D.H.H.N.); (J.P.)
| | - Nihad Kharrat Helu
- Doctoral School of Health Sciences, University of Debrecen, Egyetem tér 1, 4028 Debrecen, Hungary;
| | - Florence Tóth
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Water and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary; (F.T.); (P.T.N.)
| | - Péter Tamás Nagy
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Water and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary; (F.T.); (P.T.N.)
| | - János Posta
- Health Care Service Units, Diagnostic Units, Forensic Medicine, University of Debrecen Clinical Center, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary;
| | - József Prokisch
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary; (D.H.H.N.); (J.P.)
| | - Csaba Oláh
- Mathias Institute, University of Tokaj, Eötvös Str. 7, 3950 Sárospatak, Hungary;
- Neurosurgery Department, Borsod County University Teaching Hospital, Szentpéteri kapu 72-76, 3526 Miskolc, Hungary
| |
Collapse
|
2
|
Lee TK, Hur G, Kim JH, Park JHY, Yang H, Lee KW. Micro-grinding-based production for sulforaphene-enriched radish seeds extract via facilitating glucosinolates-myrosinase reaction, and evaluation of its anti-adipogenic effects. Food Chem 2023; 429:136864. [PMID: 37506660 DOI: 10.1016/j.foodchem.2023.136864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
Sulforaphene (SFEN), an isothiocyanate (ITC) abundant in radish (Raphanus sativus) seeds (RS), has many health benefits, including anti-obesity effects. SFEN content is affected by multiple factors during processing, such as glucoraphenin (GLE) (the precursor of SFEN) availability, myrosinase (essential for conversion from GLE to SFEN) activity, and SFEN stability. We examined the physiochemical-properties and anti-adipogenic effects of SFEN-enriched RSE produced by two processes, roasting and micro-grinding. The roasting process lowered SFEN content and myrosinase activity over 50 °C. However, among micro-grinding conditions, smaller particle size (#2 grind, ≈11.31 μm) more effectively increased SFEN content in RS compared to larger particles (#1 grind, ≈ 179.50 μm) by accelerating available GLE and myrosinase release from RS. Grind #2 also effectively inhibited the adipogenesis of 3T3-L1 pre-adipocytes compared to #1. Thus, micro-grinding can be suggested for producing SFEN-enriched RSE with anti-adipogenic activity as a functional material for obesity prevention or treatment.
Collapse
Affiliation(s)
- Tae Kyung Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Gihyun Hur
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jong Hun Kim
- Department of Food Science and Biotechnology, Sungshin University, Seoul 01133, Republic of Korea; Basic Science Research Institute, Sungshin University, Seoul 01133, Republic of Korea
| | - Jung Han Yoon Park
- Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Hee Yang
- Department of Food and Nutrition, Kookmin University, Seoul 02707, Republic of Korea.
| | - Ki Won Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea; Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea; Advanced Institute of Convergence Technology, Seoul National University, Suwon 16229, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang 25354, Republic of Korea; Center for Food and Bio convergence, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
3
|
Siddiqui SA, Khan S, Mehdizadeh M, Bahmid NA, Adli DN, Walker TR, Perestrelo R, Câmara JS. Phytochemicals and bioactive constituents in food packaging - A systematic review. Heliyon 2023; 9:e21196. [PMID: 37954257 PMCID: PMC10632435 DOI: 10.1016/j.heliyon.2023.e21196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/10/2023] [Accepted: 10/18/2023] [Indexed: 11/14/2023] Open
Abstract
Designing and manufacturing functional bioactive ingredients and pharmaceuticals have grown worldwide. Consumers demand for safe ingredients and concerns over harmful synthetic additives have prompted food manufacturers to seek safer and sustainable alternative solutions. In recent years the preference by consumers to natural bioactive agents over synthetic compounds increased exponentially, and consequently, naturally derived phytochemicals and bioactive compounds, with antimicrobial and antioxidant properties, becoming essential in food packaging field. In response to societal needs, packaging needs to be developed based on sustainable manufacturing practices, marketing strategies, consumer behaviour, environmental concerns, and the emergence of new technologies, particularly bio- and nanotechnology. This critical systematic review assessed the role of antioxidant and antimicrobial compounds from natural resources in food packaging and consumer behaviour patterns in relation to phytochemical and biologically active substances used in the development of food packaging. The use of phytochemicals and bioactive compounds inside packaging materials used in food industry could generate unpleasant odours derived from the diffusion of the most volatile compounds from the packaging material to the food and food environment. These consumer concerns must be addressed to understand minimum concentrations that will not affect consumer sensory and aroma negative perceptions. The research articles were carefully chosen and selected by following the Preferred Reporting Items for Systematic Reviews (PRISMA) guidelines.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing Str. 7, 49610, D-Quakenbrück, Germany
| | - Sipper Khan
- Tropics and Subtropics Group, Institute of Agricultural Engineering, University of Hohenheim, 70593, Stuttgart, Germany
| | - Mohammad Mehdizadeh
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
- Ilam Science and Technology Park, Iran
| | - Nur Alim Bahmid
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Gading, Playen, Gunungkidul, 55861, Yogyakarta, Indonesia
- Agricultural Product Technology Department, Universitas Sulawesi Barat, Majene, 90311, Indonesia
| | - Danung Nur Adli
- Faculty of Animal Science, University of Brawijaya, Malang, East Java, 65145, Indonesia
| | - Tony R. Walker
- School for Resource and Environmental Studies, Dalhousie University, Halifax, Nova Scotia, B3H, 4R2, Canada
| | - Rosa Perestrelo
- CQM – Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - José S. Câmara
- CQM – Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
- Departamento de Química, Faculdade de Ciências Exatas e da Engenharia, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| |
Collapse
|
4
|
Liang M, Wang R, Wu Y, Xin R, Guan W, Liu Y. Comparative Analysis of Volatile Flavor Compounds in Seven Mustard Pastes via HS-SPME-GC-MS. Molecules 2023; 28:5482. [PMID: 37513353 PMCID: PMC10383883 DOI: 10.3390/molecules28145482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
To identify the volatile flavor components in mustard paste (MP), the volatile compounds in seven MPs available on the market were isolated and analyzed by headspace solid-phase microextraction combined with gas chromatography-mass spectrometry. A total of 27 volatile constituents were found by mass spectra and retention index compared to the data obtained from reference compounds or the related literature and databases; these compounds included nine esters, three sulfur-containing compounds, two nitriles, three ketones, three alkenes, and seven other compounds. Of the 27 compounds, 6 compounds came from the turmeric added to MPs. Among the components detected, some compounds derived from AITC were allyl thiocyanate, carbon disulfide, allyl mercaptan, diallyl sulfide, and diallyl disulfide. The results obtained provide a better and comprehensive recognition of the volatile flavor compounds in MPs, and have some reference values for developing and applying isothiocyanate compounds.
Collapse
Affiliation(s)
- Miao Liang
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
- School of Light Industry, Beijing Technology & Business University, Beijing 100048, China
| | - Rui Wang
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
- School of Light Industry, Beijing Technology & Business University, Beijing 100048, China
| | - Yajian Wu
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
- School of Light Industry, Beijing Technology & Business University, Beijing 100048, China
| | - Runhu Xin
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
- School of Light Industry, Beijing Technology & Business University, Beijing 100048, China
| | - Wei Guan
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
- School of Light Industry, Beijing Technology & Business University, Beijing 100048, China
| | - Yuping Liu
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
- School of Light Industry, Beijing Technology & Business University, Beijing 100048, China
| |
Collapse
|
5
|
Shao L, Xi Y, Weng Y. Recent Advances in PLA-Based Antibacterial Food Packaging and Its Applications. Molecules 2022; 27:molecules27185953. [PMID: 36144687 PMCID: PMC9502505 DOI: 10.3390/molecules27185953] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/20/2022] Open
Abstract
In order to reduce environmental pollution and resource waste, food packaging materials should not only have good biodegradable ability but also effective antibacterial properties. Poly(lactic acid) (PLA) is the most commonly used biopolymer for food packaging applications. PLA has good physical properties, mechanical properties, biodegradability, and cell compatibility but does not have inherent antibacterial properties. Therefore, antibacterial packaging materials based on PLA need to add antibacterial agents to the polymer matrix. Natural antibacterial agents are widely used in food packaging materials due to their low toxicity. The high volatility of natural antibacterial agents restricts their application in food packaging materials. Therefore, appropriate processing methods are particularly important. This review introduces PLA-based natural antibacterial food packaging, and the composition and application of natural antibacterial agents are discussed. The properties of natural antibacterial agents, the technology of binding with the matrix, and the effect of inhibiting various bacteria are summarized.
Collapse
Affiliation(s)
- Linying Shao
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Yuewei Xi
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China
- Correspondence: (Y.X.); (Y.W.)
| | - Yunxuan Weng
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China
- Correspondence: (Y.X.); (Y.W.)
| |
Collapse
|
6
|
Siddiqui SA, Bahmid NA, Taha A, Khalifa I, Khan S, Rostamabadi H, Jafari SM. Recent advances in food applications of phenolic-loaded micro/nanodelivery systems. Crit Rev Food Sci Nutr 2022; 63:8939-8959. [PMID: 35426751 DOI: 10.1080/10408398.2022.2056870] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The current relevance of a healthy diet in well-being has led to a surging interest in designing novel functional food products enriched by biologically active molecules. As nature-inspired bioactive components, several lines of research have revealed the capability of polyphenolic compounds (phenolics) in the medical intervention of different ailments, i.e., tumors, cardiovascular and inflammatory diseases. Phenolics typically possess antioxidant and antibacterial properties and, due to their unique molecular structure, can offer superior platforms for designing functional products. They can protect food ingredients from oxidation and promote the physicochemical attributes of proteins and carbohydrate-based materials. Even though these properties contribute to the inherent benefits of bioactive phenolics as important functional ingredients in the food industry, the in vitro/in vivo instability, poor solubility, and low bioavailability are the main factors restricting their food/pharma applicability. Recent advances in the encapsulation realm are now offering efficient platforms to overcome these limitations. The application of encapsulation field may offer protection and controlled delivery of phenolics in food formulations. Here, we review recent advances in micro/nanoencapsulation of phenolics and highlight efficient carriers from this decade, which have been utilized successfully in food applications. Although further development of phenolic-containing formulations promises to design novel functional food formulations, and revolutionize the food industry, most of the strategies found in the scientific literature are not commercially applicable. Moreover, in vivo experiments are extremely crucial to corroborate the efficiency of such products.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | - Nur Alim Bahmid
- National Research and Innovation Agency, Jakarta, Indonesia
- Agricultural Product Technology Department, Sulawesi Barat University, Majene, Indonesia
| | - Ahmed Taha
- Center for Physical Sciences and Technology, State Research Institute, Vilnius, Lithuania
- Department of Food Science, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Ibrahim Khalifa
- Food Technology Department, Faculty of Agriculture, Benha University, Moshtohor, Egypt
| | - Sipper Khan
- Institute of Agricultural Engineering Tropics and Subtropics Group, University of Hohenheim, Stuttgart, Germany
| | - Hadis Rostamabadi
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seid Mahdi Jafari
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
| |
Collapse
|
7
|
Xia Q, Zhou C, Wu Z, Pan D, Cao J. Proposing processomics as the methodology of food quality monitoring: Re-conceptualization, opportunities, and challenges. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100823] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
8
|
Chen J, Li Y, Shi W, Zheng H, Wang L, Li L. Release of Cinnamaldehyde and Thymol from PLA/Tilapia Fish Gelatin-Sodium Alginate Bilayer Films to Liquid and Solid Food Simulants, and Japanese Sea Bass: A Comparative Study. Molecules 2021; 26:7140. [PMID: 34885735 PMCID: PMC8659066 DOI: 10.3390/molecules26237140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/11/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022] Open
Abstract
This study aimed to develop an active biodegradable bilayer film and to investigate the release behaviors of active compounds into different food matrices. Cinnamaldehyde (CI) or thymol (Ty) was encapsulated in β-cyclodextrin (β-CD) to prepare the active β-CD inclusion complex (β-CD-CI/β-CD-Ty). The tilapia fish gelatin-sodium alginate composite (FGSA) containing β-CD-CI or β-CD-Ty was coated on the surface of PLA film to obtain the active bilayer film. Different food simulants including liquid food simulants (water, 3% acetic acid, 10% ethanol, and 95% ethanol), solid dry food simulant (modified polyphenylene oxide (Tenax TA)), and the real food (Japanese sea bass) were selected to investigate the release behaviors of bilayer films into different food matrixes. The results showed that the prepared β-CD inclusion complexes distributed evenly in the cross-linking structure of FGSA and improved the thickness and water contact angle of the bilayer films. Active compounds possessed the lowest release rates in Tenax TA, compared to the release to liquid simulants and sea bass. CI and Ty sustained the release to the sea bass matrix with a similar behavior to the release to 95% ethanol. The bilayer film containing β-CD-Ty exhibited stronger active antibacterial and antioxidant activities, probably due to the higher release efficiency of Ty in test mediums.
Collapse
Affiliation(s)
- Jingwen Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (J.C.); (Y.L.); (W.S.); (H.Z.)
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yinxuan Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (J.C.); (Y.L.); (W.S.); (H.Z.)
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Wenzheng Shi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (J.C.); (Y.L.); (W.S.); (H.Z.)
| | - Hui Zheng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (J.C.); (Y.L.); (W.S.); (H.Z.)
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Li Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (J.C.); (Y.L.); (W.S.); (H.Z.)
| | - Li Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (J.C.); (Y.L.); (W.S.); (H.Z.)
| |
Collapse
|
9
|
Bahmid NA, Dekker M, Fogliano V, Heising J. Modelling the effect of food composition on antimicrobial compound absorption and degradation in an active packaging. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2021.110539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|