1
|
Kan G, Chen L, Zhang W, Bian Q, Wang X, Zhong J. Recent advances in the development and application of curcumin-loaded micro/nanocarriers in food research. Adv Colloid Interface Sci 2025; 335:103333. [PMID: 39522421 DOI: 10.1016/j.cis.2024.103333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 10/05/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
The application of curcumin in food science is challenged by its poor water solubility, easy degradation under processing and within the gastrointestinal tract, and poor bioavailability. Micro/nanocarrier is an emerging and efficient platform to overcome these drawbacks. This review focuses on the recent advances in the development and application of curcumin-loaded micro/nanocarriers in food research. The recent development advances of curcumin-loaded micro/nanocarriers could be classified into ten basic systems: emulsions, micelles, dendrimers, hydrogel polymeric particles, polymer nanofibers, polymer inclusion complexes, liposomes, solid lipid particles, structured lipid carriers, and extracellular vesicles. The application advances of curcumin-loaded micro/nanocarriers for food research could be classified into four types: coloring agents, functional active agents, preservation agents, and quality sensors. This review demonstrated that micro/nanocarriers were excellent carriers for the fat-soluble curcumin and the obtained curcumin-loaded micro/nanocarriers had promising application prospects in the field of food science.
Collapse
Affiliation(s)
- Guangyi Kan
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing of Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Lijia Chen
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing of Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Wenjie Zhang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing of Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Qiqi Bian
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing of Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xichang Wang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing of Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China.
| | - Jian Zhong
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing of Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai 200135, China; Marine Biomedical Science and Technology Innovation Platform of Lingang Special Area, Shanghai 201306, China.
| |
Collapse
|
2
|
Mady MS, Sobhy Y, Orabi A, Sharaky M, Mina SA, Abo-Zeid Y. Preparation and characterization of nano-emulsion formulations of Asparagus densiflorus root and aerial parts extracts: evaluation of in-vitro antibacterial and anticancer activities of nano-emulsion versus pure plant extract. Drug Dev Ind Pharm 2024; 50:658-670. [PMID: 39093556 DOI: 10.1080/03639045.2024.2386001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/29/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
OBJECTIVE Preparation and characterization of nano-emulsion formulations for Asparagus densiflorus aerial and root parts extracts. SIGNIFICANCE Genus Asparagus is known for its antimicrobial and anticancer activities, however, freeze dried powder of aqueous - alcoholic extract prepared in this study, exhibited a limited water solubility, limiting its therapeutic application. Thus, encapsulation of its phytochemicals into nano-emulsion is proposed as a solution to improve water solubility, and facilitate its clinical translation. METHODS the composition of extracts for both aerial and root parts of Asparagus densiflorus was identified by HPLC and LC-MS analysis. Nano-emulsion was prepared via homogenization where a mixture of Castor oil: phosphate buffered saline (10 mM, pH 7.4): Tween 80: PEG 600 in a ratio of 10: 5: 2.5: 2.5, respectively. Nano-emulsion formulations were characterized for particle size, polydispersity index (PDI), zeta potential, TEM, viscosity and pH. Then, the antibacterial and anticancer activities of nano-emulsion formulations versus their pure plant counterparts was assessed. RESULTS The analysis of extracts identified several flavonoids, phenolics, and saponins which were reported to have antimicrobial and anticancer activities. Nano-emulsion formulations were monodispersed with droplet sizes ranging from 80.27 ± 2.05 to 111.16 ± 1.97 nm, and polydispersity index ≤0.3. Nano-emulsion formulations enhanced significantly the antibacterial (multidrug resistant bacteria causing skin and dental soft tissues infections) and anticancer (HuH7, HEPG2, H460 and HCT116) activities compared to their pure plant extract counterparts. CONCLUSION Employing a nano-delivery system as a carrier for phytochemicals might be an effective strategy to enhance their pharmacological activity, overcome their limitations, and ultimately increase their potential for clinical applications.
Collapse
Affiliation(s)
- Mohamed S Mady
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University. Ain Helwan, Cairo, Egypt
| | - Yasmin Sobhy
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University. Ain Helwan, Cairo, Egypt
| | - Ahmed Orabi
- Microbiology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Marwa Sharaky
- Pharmacology Unit - Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ahram Canadian University, Cairo, Egypt
| | - Suzan A Mina
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University. Ain Helwan, Cairo, Egypt
| | - Yasmin Abo-Zeid
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| |
Collapse
|
3
|
Zhu YA, Sun P, Duan C, Cao Y, Kong B, Wang H, Chen Q. Improving stability and bioavailability of curcumin by quaternized chitosan coated nanoemulsion. Food Res Int 2023; 174:113634. [PMID: 37986538 DOI: 10.1016/j.foodres.2023.113634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/22/2023]
Abstract
This study aims to enhance the stability and bioavailability of curcumin (Cur) using nanoemulsion coating technology. The nanoemulsion system was developed by encapsulating Cur with quaternized chitosan (QMNE), and the nanoemulsion containing Cur and medium-chain triglyceride (MCT) oil (MNE) was used as control sample. The microstructure of the nanoemulsion was examined using Dynamic light scattering (DLS), Transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FT-IR). The storage, thermal, ionic strength, and pH stability of QMNE were also evaluated, respectively. The results indicate that QMNE demonstrates superior stability, in vitro gastric fluid stability, bioavailability compared to MNE. QMNE exhibits excellent emulsification activity and stability. In addition, QMNE shows significant protection against oxidation in both emulsion systems after different heat treatments. The antimicrobial activity results reveal that QMNE exhibits greater efficacy than that of MNE. Consequently, this study provides valuable insights into the formulation of a system to encapsulate Cur and the improvement of its stability and bioavailability.
Collapse
Affiliation(s)
- Ying-Ao Zhu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Pengyuan Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Chengyu Duan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yuhang Cao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hui Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
4
|
Camelo-Silva C, Figueredo LL, Cesca K, Verruck S, Ambrosi A, Di Luccio M. Membrane Emulsification as an Emerging Method for Lacticaseibacillus rhamnosus GG ® Encapsulation. FOOD BIOPROCESS TECH 2023:1-17. [PMID: 37363380 PMCID: PMC10120479 DOI: 10.1007/s11947-023-03099-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 04/12/2023] [Indexed: 06/28/2023]
Abstract
Techniques capable of producing small-sized probiotic microcapsules with high encapsulation yields are of industrial and scientific interest. In this study, an innovative membrane emulsification system was investigated in the production of microcapsules containing Lacticaseibacillus rhamnosus GG® (Lr), sodium alginate (ALG), and whey protein (WPI), rice protein (RPC), or pea protein (PPC) as encapsulating agents. The microcapsules were characterized by particle size distribution, optical microscopy, encapsulation yield, morphology, water activity, hygroscopicity, thermal properties, Fourier-transform infrared spectroscopy (FTIR), and probiotic survival during in vitro simulation of gastrointestinal conditions. The innovative encapsulation technique resulted in microcapsules with diameters varying between 18 and 29 μm, and encapsulation yields > 93%. Combining alginate and whey, rice, or pea protein improved encapsulation efficiency and thermal properties. The encapsulation provided resistance to gastrointestinal fluids, resulting in high probiotic viability at the end of the intestinal phase (> 7.18 log CFU g-1). The proposed encapsulation technology represents an attractive alternative to developing probiotic microcapsules for future food applications. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s11947-023-03099-w.
Collapse
Affiliation(s)
- Callebe Camelo-Silva
- Laboratory of Membrane Processes, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-970 Brazil
| | - Lais Leite Figueredo
- Laboratory of Membrane Processes, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-970 Brazil
| | - Karina Cesca
- Laboratory of Biological Engineering, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-970 Brazil
| | - Silvani Verruck
- Department of Food Science and Technology, Agricultural Sciences Center, Federal University of Santa Catarina, Florianópolis, SC 88034-001 Brazil
| | - Alan Ambrosi
- Laboratory of Membrane Processes, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-970 Brazil
| | - Marco Di Luccio
- Laboratory of Membrane Processes, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-970 Brazil
| |
Collapse
|
5
|
Qiu L, Zhang M, Chitrakar B, Adhikari B, Yang C. Effects of nanoemulsion-based chicken bone gelatin-chitosan coatings with cinnamon essential oil and rosemary extract on the storage quality of ready-to-eat chicken patties. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
6
|
Saini A, Panesar PS, Dilbaghi N, Prasad M, Bera MB. Lutein extract loaded nanoemulsions: Preparation, characterization, and application in dairy product. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Anuradha Saini
- Department of Food Engineering & Technology Sant Longowal Institute of Engineering and Technology Longowal Punjab India
- Amity Institute of Biotechnology Amity University Rajasthan Jaipur India
| | - Parmjit Singh Panesar
- Department of Food Engineering & Technology Sant Longowal Institute of Engineering and Technology Longowal Punjab India
| | - Neeraj Dilbaghi
- Department of Bio & Nano Technology Guru Jambheshwar University of Science & Technology Haryana India
| | - Minakshi Prasad
- Department of Animal Biotechnology Lala Lajpat Rai University of Veterinary and Animal Sciences Hisar India
| | - Manab Bandhu Bera
- Department of Food Engineering & Technology Sant Longowal Institute of Engineering and Technology Longowal Punjab India
| |
Collapse
|
7
|
Đoković JB, Demisli S, Savić SM, Marković BD, Cekić ND, Randjelovic DV, Mitrović JR, Lunter DJ, Papadimitriou V, Xenakis A, Savić SD. The Impact of the Oil Phase Selection on Physicochemical Properties, Long-Term Stability, In Vitro Performance and Injectability of Curcumin-Loaded PEGylated Nanoemulsions. Pharmaceutics 2022; 14:pharmaceutics14081666. [PMID: 36015291 PMCID: PMC9415641 DOI: 10.3390/pharmaceutics14081666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/24/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022] Open
Abstract
A nanotechnology-based approach to drug delivery presents one of the biggest trends in biomedical science that can provide increased active concentration, bioavailability, and safety compared to conventional drug-delivery systems. Nanoemulsions stand out amongst other nanocarriers for being biodegradable, biocompatible, and relatively easy to manufacture. For improved drug-delivery properties, longer circulation for the nanoemulsion droplets should be provided, to allow the active to reach the target site. One of the strategies used for this purpose is PEGylation. The aim of this research was assessing the impact of the oil phase selection, soybean or fish oil mixtures with medium chain triglycerides, on the physicochemical characteristics and injectability of curcumin-loaded PEGylated nanoemulsions. Electron paramagnetic resonance spectroscopy demonstrated the structural impact of the oil phase on the stabilizing layer of nanoemulsions, with a more pronounced stabilizing effect of curcumin observed in the fish oil nanoemulsion compared to the soybean oil one. The design of the experiment study, employed to simultaneously assess the impact of the oil phase, different PEGylated phospholipids and their concentrations, as well as the presence of curcumin, showed that not only the investigated factors alone, but also their interactions, had a significant influence on the critical quality attributes of the PEGylated nanoemulsions. Detailed physicochemical characterization of the NEs found all formulations were appropriate for parenteral administration and remained stable during two years of storage, with the preserved antioxidant activity demonstrated by DPPH and FRAP assays. In vitro release studies showed a more pronounced release of curcumin from the fish oil NEs compared to that from the soybean oil ones. The innovative in vitro injectability assessment, designed to mimic intravenous application, proved that all formulations tested in selected experimental setting could be employed in prospective in vivo studies. Overall, the current study shows the importance of oil phase selection when formulating PEGylated nanoemulsions.
Collapse
Affiliation(s)
- Jelena B. Đoković
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Sotiria Demisli
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | | | - Bojan D. Marković
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Nebojša D. Cekić
- DCP Hemigal, Tekstilna 97, 16000 Leskovac, Serbia
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Technology, University of Niš, Bulevar Oslobođenja 124, 16000 Leskovac, Serbia
| | - Danijela V. Randjelovic
- Department of Microelectronic Technologies, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia
| | - Jelena R. Mitrović
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Dominique Jasmin Lunter
- Institut für Pharmazeutische Technologie, Eberhard-Karls Universität, D-72076 Tübingen, Germany
| | | | - Aristotelis Xenakis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Snežana D. Savić
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
- Correspondence:
| |
Collapse
|
8
|
Li X, Zhang Z, Harris A, Yang L. Bridging the gap between fundamental research and product development of long acting injectable PLGA microspheres. Expert Opin Drug Deliv 2022; 19:1247-1264. [PMID: 35863759 DOI: 10.1080/17425247.2022.2105317] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Long acting Injectable PLGA microspheres have gained more and more interest and attention in the field of life cycle management of pharmaceutical products due to their biocompatibility and biodegradability. So far, a multitude of trial-and-error experiments at lab scale have been used for establishing the correlation relationship between critical process parameters, critical material attributes and critical quality attributes. However, few published studies have elaborated on the development of PLGA microspheres from an industrial perspective. AREAS COVERED In this review, the scale-up feasibility of translational technologies of PLGA microspheres manufacturing have been evaluated. Additionally, state-of-the-art of technologies and facilities in PLGA development have been summarized. Meanwhile, the industrial knowledge matrix of PLGA microspheres development and research are establishing which provide comprehensive insight for understanding properties of PLGA microspheres as controlled/sustained release vehicle. EXPERT OPINION There is still big gap between fundamental research in academic institute and product development in pharmaceuticals. Therefore, the difference and connection between them should be identified gradually for better understanding of PLGA microspheres development.
Collapse
Affiliation(s)
- Xun Li
- Ferring Product Development China, Global R&D life cycle management department, Ferring Pharmaceuticals (Asia) Company Limited, Beijing China
| | - Zhanpeng Zhang
- Ferring Product Development China, Global R&D life cycle management department, Ferring Pharmaceuticals (Asia) Company Limited, Beijing China
| | - Alan Harris
- Global R&D life cycle management department, Ferring International Center SA, St-Prex, Switzerland
| | - Lin Yang
- Ferring Product Development China, Global R&D life cycle management department, Ferring Pharmaceuticals (Asia) Company Limited, Beijing China
| |
Collapse
|
9
|
Jiang T, Charcosset C. Encapsulation of curcumin within oil-in-water emulsions prepared by premix membrane emulsification: Impact of droplet size and carrier oil on the chemical stability of curcumin. Food Res Int 2022; 157:111475. [DOI: 10.1016/j.foodres.2022.111475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/19/2022] [Accepted: 06/04/2022] [Indexed: 11/27/2022]
|
10
|
Elbassiouni FE, El-Kholy WM, Elhabibi ESM, Albogami S, Fayad E. Comparative Study between Curcumin and Nanocurcumin Loaded PLGA on Colon Carcinogenesis Induced Mice. NANOMATERIALS 2022; 12:nano12030324. [PMID: 35159669 PMCID: PMC8839170 DOI: 10.3390/nano12030324] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 11/25/2022]
Abstract
Colorectal cancer is the third most common cancer. Because curcumin (CUR) has anti-inflammatory and anticancer properties, research has been undertaken to indicate that nanocurcumin compounds can be used to treat a variety of cancers. CUR in nanoform has been found to have a stronger effect than conventional CUR. The purpose of this study was to show that CUR-loaded poly lactic-co-glycolic acid nanoparticles (PLGA) (CUR-loaded PLGA) have anti-inflammatory and anticancer effects on colon carcinogenesis in male dimethyl hydrazine (DMH) mice as a comparative study between the nanoform of curcumin and normal curcumin, focusing on the anticancer effect of nanocurcumin. Mice were separated into six groups: No treatment was given to Group I (negative Group-I). Group II was treated with CUR. Group III was treated with CUR-loaded PLGA. Group IV was treated with DMH. Group V received DMH and curcumin. Group VI received DMH and CUR-loaded PLGA. At the conclusion of the trial, the animals were slain (6 weeks). Inflammatory indicators and vascular endothelial growth factor (VEGF) levels all changed significantly in this study, as the following inflammatory markers as TNF showed percent of change compared to the DMH group. Recovery percentage for Groups V and VI, respectively, were 9.18 and 55.31%. In addition, IL1 was 7.45 and 50.37% for Groups V and VI, respectively. The results of IL6 were 4.86 and 25.79% for Groups V and VI, respectively. The vascular endothelial growth factor (VEGF) recovery percent was 16.98 and 45.12% for Groups V and VI, respectively. Following the effect of DMH on colon mucosa shape, the researchers looked at the effect of CUR-loaded PLGA on colon histology. It was shown that CUR-loaded PLGA affects the cell cycle and PCNA expression. We conclude that nanocurcumin is an important anti-inflammatory and cancer-fighting agent.
Collapse
Affiliation(s)
- Farida E. Elbassiouni
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura 35516, Egypt; (W.M.E.-K.); (E.-S.M.E.)
- Correspondence: (F.E.E.); (E.F.)
| | - Wafaa M. El-Kholy
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura 35516, Egypt; (W.M.E.-K.); (E.-S.M.E.)
| | - El-Sayed M. Elhabibi
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura 35516, Egypt; (W.M.E.-K.); (E.-S.M.E.)
| | - Sarah Albogami
- Department of Biotechnology, Faculty of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Eman Fayad
- Department of Biotechnology, Faculty of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
- Correspondence: (F.E.E.); (E.F.)
| |
Collapse
|
11
|
Jiang T, Charcosset C. Encapsulation of curcumin within oil-in-water emulsions prepared by premix membrane emulsification: Impact of droplet size and carrier oil type on physicochemical stability and in vitro bioaccessibility. Food Chem 2021; 375:131825. [PMID: 34936971 DOI: 10.1016/j.foodchem.2021.131825] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/01/2021] [Accepted: 12/05/2021] [Indexed: 11/28/2022]
Abstract
Oil-in-water emulsions containing curcumin with different droplet size (small ≈ 0.5 µm, medium ≈ 0.8 µm, large ≈ 3.7 µm and premix ≈ 60 µm) were prepared through premix membrane emulsification using different carrier oils: tributyrin (short chain triglycerides, SCT), medium chain triglycerides (MCT) and corn oil (long chain triglycerides, LCT). An in vitro gastrointestinal model was used to evaluate the impact of oil and droplet size on lipid digestion and curcumin bioaccessibility. Lipid digestion and bioaccessibility decreased with the increase of droplet size for LCT-based emulsions, whereas there was no significant difference for small, medium and large emulsions in SCT and MCT-based emulsions. In addition, encapsulation efficiency played an important role in determining bioaccessibility. Bioaccessibility in MCT premix was significantly lower than that in other size MCT-based emulsions because of its low encapsulation efficiency. The bioaccessibility decreased in the order MCT > SCT > LCT in each size of emulsions..
Collapse
Affiliation(s)
- Tian Jiang
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69100 Villeurbanne, France
| | - Catherine Charcosset
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69100 Villeurbanne, France.
| |
Collapse
|