1
|
Barozi V, Musyoka TM, Sheik Amamuddy O, Tastan Bishop Ö. Deciphering Isoniazid Drug Resistance Mechanisms on Dimeric Mycobacterium tuberculosis KatG via Post-molecular Dynamics Analyses Including Combined Dynamic Residue Network Metrics. ACS OMEGA 2022; 7:13313-13332. [PMID: 35474779 PMCID: PMC9025985 DOI: 10.1021/acsomega.2c01036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 03/22/2022] [Indexed: 05/12/2023]
Abstract
Resistance mutations in Mycobacterium tuberculosis (Mtb) catalase peroxidase protein (KatG), an essential enzyme in isoniazid (INH) activation, reduce the sensitivity of Mtb to first-line drugs, hence presenting challenges in tuberculosis (TB) management. Thus, understanding the mutational imposed resistance mechanisms remains of utmost importance in the quest to reduce the TB burden. Herein, effects of 11 high confidence mutations in the KatG structure and residue network communication patterns were determined using extensive computational approaches. Combined traditional post-molecular dynamics analysis and comparative essential dynamics revealed that the mutant proteins have significant loop flexibility around the heme binding pocket and enhanced asymmetric protomer behavior with respect to wild-type (WT) protein. Heme contact analysis between WT and mutant proteins identified a reduction to no contact between heme and residue His270, a covalent bond vital for the heme-enabled KatG catalytic activity. Betweenness centrality calculations showed large hub ensembles with new hubs especially around the binding cavity and expanded to the dimerization domain via interface in the mutant systems, providing possible compensatory allosteric communication paths for the active site as a result of the mutations which may destabilize the heme binding pocket and the loops in its vicinity. Additionally, an interesting observation came from Eigencentrality hubs, most of which are located in the C-terminal domain, indicating relevance of the domain in the protease functionality. Overall, our results provide insight toward the mechanisms involved in KatG-INH resistance in addition to identifying key regions in the enzyme functionality, which can be used for future drug design.
Collapse
Affiliation(s)
- Victor Barozi
- Research Unit in Bioinformatics
(RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140 South Africa
| | - Thommas Mutemi Musyoka
- Research Unit in Bioinformatics
(RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140 South Africa
| | - Olivier Sheik Amamuddy
- Research Unit in Bioinformatics
(RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140 South Africa
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics
(RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140 South Africa
| |
Collapse
|
2
|
Rani A, Johansen MD, Roquet-Banères F, Kremer L, Awolade P, Ebenezer O, Singh P, Sumanjit, Kumar V. Design and synthesis of 4-Aminoquinoline-isoindoline-dione-isoniazid triads as potential anti-mycobacterials. Bioorg Med Chem Lett 2020; 30:127576. [PMID: 32980514 DOI: 10.1016/j.bmcl.2020.127576] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022]
Abstract
A series of 4-aminoquinoline-isoindoline-dione-isoniazid triads were synthesized and assessed for their anti-mycobacterial activities and cytotoxicity. Most of the synthesized compounds exhibited promising activities against the mc26230 strain of M. tuberculosis with MIC in the range of 5.1-11.9 µM and were non-cytotoxic against Vero cells. The conjugates lacking either isoniazid or quinoline core in their structural framework failed to inhibit the growth of M. tuberculosis; thus, further strengthening the proposed design of triads in the present study.
Collapse
Affiliation(s)
- Anu Rani
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Matt D Johansen
- Institut de Recherche en Infectiologie (IRIM) de Montpellier, CNRS, UMR 9004 Université de Montpellier, France
| | - Françoise Roquet-Banères
- Institut de Recherche en Infectiologie (IRIM) de Montpellier, CNRS, UMR 9004 Université de Montpellier, France
| | - Laurent Kremer
- Institut de Recherche en Infectiologie (IRIM) de Montpellier, CNRS, UMR 9004 Université de Montpellier, France; INSERM, IRIM, 34293 Montpellier, France
| | - Paul Awolade
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Oluwakemi Ebenezer
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Parvesh Singh
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Sumanjit
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, Punjab, India.
| |
Collapse
|
3
|
Pharmacoinformatics-based identification of anti-bacterial catalase-peroxidase enzyme inhibitors. Comput Biol Chem 2019; 83:107136. [DOI: 10.1016/j.compbiolchem.2019.107136] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/28/2019] [Accepted: 09/29/2019] [Indexed: 11/17/2022]
|
4
|
Computational and modeling approaches to understand the impact of the Fabry's disease causing mutation (D92Y) on the interaction with pharmacological chaperone 1-deoxygalactonojirimycin (DGJ). MOLECULAR CHAPERONES IN HUMAN DISORDERS 2019; 114:341-407. [DOI: 10.1016/bs.apcsb.2018.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Thirumal Kumar D, Jerushah Emerald L, George Priya Doss C, Sneha P, Siva R, Charles Emmanuel Jebaraj W, Zayed H. Computational approach to unravel the impact of missense mutations of proteins (D2HGDH and IDH2) causing D-2-hydroxyglutaric aciduria 2. Metab Brain Dis 2018; 33:1699-1710. [PMID: 29987523 DOI: 10.1007/s11011-018-0278-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/20/2018] [Indexed: 01/28/2023]
Abstract
The 2-hydroxyglutaric aciduria (2-HGA) is a rare neurometabolic disorder that leads to the development of brain damage. It is classified into three categories: D-2-HGA, L-2-HGA, and combined D,L-2-HGA. The D-2-HGA includes two subtypes: type I and type II caused by the mutations in D2HGDH and IDH2 proteins, respectively. In this study, we studied six mutations, four in the D2HGDH (I147S, D375Y, N439D, and V444A) and two in the IDH2 proteins (R140G, R140Q). We performed in silico analysis to investigate the pathogenicity and stability changes of the mutant proteins using pathogenicity (PANTHER, PhD-SNP, SIFT, SNAP, and META-SNP) and stability (i-Mutant, MUpro, and iStable) predictors. All the mutations of both D2HGDH and IDH2 proteins were predicted as disease causing except V444A, which was predicted as neutral by SIFT. All the mutants were also predicted to be destabilizing the protein except the mutants D375Y and N439D. DSSP plugin of the PyMOL and Molecular Dynamics Simulations (MDS) were used to study the structural changes in the mutant proteins. In the case of D2HGDH protein, the mutations I147S and V444A that are positioned in the beta sheet region exhibited higher Root Mean Square Deviation (RMSD), decrease in compactness and number of intramolecular hydrogen bonds compared to the mutations N439D and D375Y that are positioned in the turn and loop region, respectively. While the mutants R140Q and R140QG that are positioned in the alpha helix region of the protein. MDS results revealed the mutation R140Q to be more destabilizing (higher RMSD values, decrease in compactness and number of intramolecular hydrogen bonds) compared to the mutation R140G of the IDH2 protein. This study is expected to serve as a platform for drug development against 2-HGA and pave the way for more accurate variant assessment and classification for patients with genetic diseases.
Collapse
Affiliation(s)
- D Thirumal Kumar
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - L Jerushah Emerald
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - C George Priya Doss
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| | - P Sneha
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - R Siva
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - W Charles Emmanuel Jebaraj
- Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Medical College and Research Institute, Chennai, Tamil Nadu, 600116, India
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health and Sciences, Qatar University, Doha, Qatar.
| |
Collapse
|
6
|
Unissa AN, Doss C GP, Kumar T, Sukumar S, Lakshmi AR, Hanna LE. Significance of catalase-peroxidase (KatG) mutations in mediating isoniazid resistance in clinical strains of Mycobacterium tuberculosis. J Glob Antimicrob Resist 2018; 15:111-120. [PMID: 29990547 DOI: 10.1016/j.jgar.2018.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/14/2018] [Accepted: 07/03/2018] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVES Isoniazid (INH) is still the most important first-line antitubercular drug. INH resistance is regarded as a major impediment to the tuberculosis (TB) control programme and contributes to the emergence of multidrug-resistant strains. Mutation at position 315 in the katG gene, encoding the catalase-peroxidase (KatG) enzyme, is the major cause of INH resistance in Mycobacterium tuberculosis. Therefore, investigation of the molecular mechanisms of INH resistance is the need of the hour. METHODS To understand the clinical importance of KatG mutants (MTs) leading to INH resistance, in this study five MTs (S315T, S315I, S315R, S315N and S315G) were modelled, docked and interacted with INH in dynamic state. RESULTS The binding affinity based on docking was found to be higher for MTs than for wild-type (WT) isolates, except for MT-S315R, indicating rigid binding of INH with MT proteins compared with the flexible binding seen in the WT. Analysis of molecular dynamics (MD) experiments suggested that fluctuations and deviations were higher at the INH binding residues for MTs than for the WT. Reduction in the hydrogen bond network after MD in all KatG enzymes implies an increase in the flexibility and stability of protein structures. Superimposition of MTs upon the WT structure showed a significant deviation that varies for the different MTs. CONCLUSIONS It can be inferred that the five KatG MTs affect enzyme activity in different ways, which could be attributed to conformational changes in MT KatG that result in altered binding affinity to INH and eventually to INH resistance.
Collapse
Affiliation(s)
- Ameeruddin Nusrath Unissa
- Centre for Biomedical Informatics, National Institute for Research in Tuberculosis, Chennai 600 031, Tamil Nadu, India.
| | - George Priya Doss C
- Medical Biotechnology Division, School of Biosciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Thirumal Kumar
- Medical Biotechnology Division, School of Biosciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Swathi Sukumar
- Centre for Biomedical Informatics, National Institute for Research in Tuberculosis, Chennai 600 031, Tamil Nadu, India
| | - Appisetty Ramya Lakshmi
- Centre for Biomedical Informatics, National Institute for Research in Tuberculosis, Chennai 600 031, Tamil Nadu, India
| | - Luke Elizabeth Hanna
- Centre for Biomedical Informatics, National Institute for Research in Tuberculosis, Chennai 600 031, Tamil Nadu, India
| |
Collapse
|