1
|
Teng T, Chen S, Huo F, Jia J, Zhao L, Jiang G, Wang F, Chu N, Huang H. Efflux pump effects on levofloxacin resistance in Mycobacterium abscessus. Antimicrob Agents Chemother 2024; 68:e0134823. [PMID: 38572960 PMCID: PMC11064541 DOI: 10.1128/aac.01348-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/27/2024] [Indexed: 04/05/2024] Open
Abstract
Mycobacterium abscessus (M. abscessus) inherently displays resistance to most antibiotics, with the underlying drug resistance mechanisms remaining largely unexplored. Efflux pump is believed to play an important role in mediating drug resistance. The current study examined the potential of efflux pump inhibitors to reverse levofloxacin (LFX) resistance in M. abscessus. The reference strain of M. abscessus (ATCC19977) and 60 clinical isolates, including 41 M. abscessus subsp. abscessus and 19 M. abscessus subsp. massilense, were investigated. The drug sensitivity of M. abscessus against LFX alone or in conjunction with efflux pump inhibitors, including verapamil (VP), reserpine (RSP), carbonyl cyanide 3-chlorophenylhydrazone (CCCP), or dicyclohexylcarbodiimide (DCC), were determined by AlarmarBlue microplate assay. Drug-resistant regions of the gyrA and gyrB genes from the drug-resistant strains were sequenced. The transcription level of the efflux pump genes was monitored using qRT-PCR. All the tested strains were resistant to LFX. The drug-resistant regions from the gyrA and gyrB genes showed no mutation associated with LFX resistance. CCCP, DCC, VP, and RSP increased the susceptibility of 93.3% (56/60), 91.7% (55/60), 85% (51/60), and 83.3% (50/60) isolates to LFX by 2 to 32-fold, respectively. Elevated transcription of seven efflux pump genes was observed in isolates with a high reduction in LFX MIC values in the presence of efflux pump inhibitors. Efflux pump inhibitors can improve the antibacterial activity of LFX against M. abscessus in vitro. The overexpression of efflux-related genes in LFX-resistant isolates suggests that efflux pumps are associated with the development of LFX resistance in M. abscessus.
Collapse
Affiliation(s)
- Tianlu Teng
- Department of Respiratory and Critical Care Medicine, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Suting Chen
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Fengmin Huo
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Junnan Jia
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Liping Zhao
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Guanglu Jiang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Fen Wang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Naihui Chu
- Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Hairong Huang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| |
Collapse
|
2
|
Unraveling antibiotic resistance mechanisms in Mycobacterium abscessus: the potential role of efflux pumps. J Glob Antimicrob Resist 2022; 31:345-352. [PMID: 36347496 DOI: 10.1016/j.jgar.2022.10.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/14/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVES Mycobacterium abscessus is an opportunistic respiratory pathogen in patients with underlying lung disease. It is infamously known for its low treatment success rates because of its resistance to multiple classes of antibiotics. Further insight into M. abscessus resistance mechanisms is needed to improve treatment options. In this in vitro study, the role of efflux pumps in reaction to antibiotic stress is explored, as well as the ability of the putative efflux inhibitors, thioridazine and verapamil, to potentiate the activity of guideline-recommended antibiotics. METHODS To evaluate the effects of antibiotic stress on mycobacterial efflux pumps, M. abscessus subspecies abscessus was exposed to amikacin, cefoxitin, clarithromycin, clofazimine, and tigecycline for 24 hours. Transcriptomic responses were measured by RNA sequencing to gain insight into upregulation of efflux pump encoding genes. Subsequently, in time-kill kinetics assays, the above-mentioned antibiotics were combined with thioridazine and verapamil to evaluate their potentiating capacity. RESULTS All five antibiotics led to a fold change of ≥2 Log2 in expression of one or more genes encoding transporter systems. This effect was most pronounced for the ribosome-targeting antibiotics amikacin, clarithromycin, and tigecycline. Time-kill kinetics assays demonstrated synergy between amikacin, tigecycline, clofazimine, cefoxitin, and both thioridazine and verapamil. CONCLUSION Antibiotic stressors induce expression of efflux pump encoding genes in M. abscessus, especially antibiotics that target the ribosome. Putative efflux inhibitors thioridazine and verapamil show synergy with various guideline-recommended antibiotics, making them interesting candidates for the improvement of M. abscessus treatment.
Collapse
|
3
|
Intramacrophage potential of a tetrahydropyridine: A promising compound in combating Mycobacterium tuberculosis. Tuberculosis (Edinb) 2022; 136:102252. [DOI: 10.1016/j.tube.2022.102252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 11/23/2022]
|
4
|
Illouz M, Alcaraz M, Roquet-Banères F, Kremer L. [Mycobacterium abscessus, a model of resistance to multiple antibiotic classes]. Med Sci (Paris) 2021; 37:993-1001. [PMID: 34851275 DOI: 10.1051/medsci/2021164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mycobacterium abscessus is an environmental fast-growing, non-tuberculous mycobacterium responsible for severe lung infections, especially in patients with underlying lung disorders such as cystic fibrosis. The standard chemotherapy combines a b-lactam (imipenem or cefoxitin), an aminoglycoside (amikacin) and a macrolide (clarithromycin or azithromycin). However, resistance of this bacterium to most antibiotic classes, including nearly all anti-tubercular drugs, leads frequently to treatment failure and considerably reduces the therapeutic arsenal available to the clinician. A comprehensive understanding of the innate and acquired resistance mechanisms is thus necessary to counteract M. abscessus lung infections.
Collapse
Affiliation(s)
- Morgane Illouz
- CNRS UMR 9004, Institut de recherche en infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293, Montpellier, France
| | - Matthéo Alcaraz
- CNRS UMR 9004, Institut de recherche en infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293, Montpellier, France
| | - Françoise Roquet-Banères
- CNRS UMR 9004, Institut de recherche en infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293, Montpellier, France
| | - Laurent Kremer
- CNRS UMR 9004, Institut de recherche en infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293, Montpellier, France - Inserm, IRIM, 34293 Montpellier, France
| |
Collapse
|
5
|
Mittersteiner M, Bonacorso HG, Martins MAP, Zanatta N. Haloacetylated Enol Ethers: a Way Out for the Regioselective Synthesis of Biologically Active Heterocycles. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mateus Mittersteiner
- Núcleo de Química de Heterociclos (NUQUIMHE) Departamento de Química Universidade Federal de Santa Maria 97105-900 Santa Maria Brazil
| | - Helio G. Bonacorso
- Núcleo de Química de Heterociclos (NUQUIMHE) Departamento de Química Universidade Federal de Santa Maria 97105-900 Santa Maria Brazil
| | - Marcos A. P. Martins
- Núcleo de Química de Heterociclos (NUQUIMHE) Departamento de Química Universidade Federal de Santa Maria 97105-900 Santa Maria Brazil
| | - Nilo Zanatta
- Núcleo de Química de Heterociclos (NUQUIMHE) Departamento de Química Universidade Federal de Santa Maria 97105-900 Santa Maria Brazil
| |
Collapse
|
6
|
Halicki PCB, Vianna JS, Zanatta N, de Andrade VP, de Oliveira M, Mateus M, da Silva MV, Rodrigues V, Ramos DF, Almeida da Silva PE. 2,2,2-trifluoro-1-(1,4,5,6-tetrahydropyridin-3-yl)ethanone derivative as efflux pump inhibitor in Mycobacterium tuberculosis. Bioorg Med Chem Lett 2021; 42:128088. [PMID: 33964440 DOI: 10.1016/j.bmcl.2021.128088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/26/2021] [Accepted: 05/02/2021] [Indexed: 11/26/2022]
Abstract
Although the administration of combined therapy is efficient to tuberculosis (TB) treatment caused by susceptible Mycobacterium tuberculosis strains, to overcome the multidrug resistance is still a challenge. Some studies have reported evidence about tetrahydropyridines as a putative efflux pump inhibitor, including in mycobacteria, being a promising strategy against M. tuberculosis. Thus, we investigated the biological potential of 2,2,2-trifluoro-1-(1,4,5,6-tetrahydropyridin-3-yl)ethanone derivative (NUNL02) against two strains of M. tuberculosis. NUNL02 was able to increase the susceptibility of the multidrug resistant strain to the anti-TB drugs, resulting in synergism with rifampicin. Still, we assume that this compound plays a role in the efflux mechanism in M. tuberculosis, besides, to be able to kill the bacillus under the deprivation of essential nutrients. Thus, our findings highlight NUNL02 as a promising prototype to develop a new adjuvant for TB treatment, mainly as EPI.
Collapse
Affiliation(s)
- Priscila Cristina Bartolomeu Halicki
- Núcleo de Pesquisa em Microbiologia Médica (NUPEMM), Universidade Federal do Rio Grande (FURG) - Rua Visconde de Paranaguá, 102 - sala 425 - Centro. Rio Grande, Rio Grande do Sul CEP 96203-900, Brazil; Núcleo de Desenvolvimento de Novos Fármacos (NUDEFA), Universidade Federal do Rio Grande (FURG) - Rua Visconde de Paranaguá, 102 - Centro. Rio Grande, Rio Grande do Sul CEP 96203-900, Brazil
| | - Júlia Silveira Vianna
- Núcleo de Pesquisa em Microbiologia Médica (NUPEMM), Universidade Federal do Rio Grande (FURG) - Rua Visconde de Paranaguá, 102 - sala 425 - Centro. Rio Grande, Rio Grande do Sul CEP 96203-900, Brazil
| | - Nilo Zanatta
- Núcleo de Química de Heterocliclos (NUQUIMHE), Universidade Federal de Santa Maria (UFSM), Av. Roraima n° 1000 - Prédio 15 - Camobi. Santa Maria, Rio Grande do Sul CEP 97105-900, Brazil
| | - Valquiria Pereira de Andrade
- Núcleo de Química de Heterocliclos (NUQUIMHE), Universidade Federal de Santa Maria (UFSM), Av. Roraima n° 1000 - Prédio 15 - Camobi. Santa Maria, Rio Grande do Sul CEP 97105-900, Brazil
| | - Mariana de Oliveira
- Departamento de Microbiologia, Imunologia e Parasitologia - Universidade Federal do Triângulo Mineiro (UFTM) - Avenida Frei Paulino, 30 - Nossa Senhora da Abadia. Uberaba, Minas Gerais CEP 38025-180, Brazil
| | - Malu Mateus
- Departamento de Microbiologia, Imunologia e Parasitologia - Universidade Federal do Triângulo Mineiro (UFTM) - Avenida Frei Paulino, 30 - Nossa Senhora da Abadia. Uberaba, Minas Gerais CEP 38025-180, Brazil
| | - Marcos Vinicius da Silva
- Departamento de Microbiologia, Imunologia e Parasitologia - Universidade Federal do Triângulo Mineiro (UFTM) - Avenida Frei Paulino, 30 - Nossa Senhora da Abadia. Uberaba, Minas Gerais CEP 38025-180, Brazil
| | - Virmondes Rodrigues
- Departamento de Microbiologia, Imunologia e Parasitologia - Universidade Federal do Triângulo Mineiro (UFTM) - Avenida Frei Paulino, 30 - Nossa Senhora da Abadia. Uberaba, Minas Gerais CEP 38025-180, Brazil
| | - Daniela Fernandes Ramos
- Núcleo de Pesquisa em Microbiologia Médica (NUPEMM), Universidade Federal do Rio Grande (FURG) - Rua Visconde de Paranaguá, 102 - sala 425 - Centro. Rio Grande, Rio Grande do Sul CEP 96203-900, Brazil; Núcleo de Desenvolvimento de Novos Fármacos (NUDEFA), Universidade Federal do Rio Grande (FURG) - Rua Visconde de Paranaguá, 102 - Centro. Rio Grande, Rio Grande do Sul CEP 96203-900, Brazil
| | - Pedro Eduardo Almeida da Silva
- Núcleo de Pesquisa em Microbiologia Médica (NUPEMM), Universidade Federal do Rio Grande (FURG) - Rua Visconde de Paranaguá, 102 - sala 425 - Centro. Rio Grande, Rio Grande do Sul CEP 96203-900, Brazil; Núcleo de Desenvolvimento de Novos Fármacos (NUDEFA), Universidade Federal do Rio Grande (FURG) - Rua Visconde de Paranaguá, 102 - Centro. Rio Grande, Rio Grande do Sul CEP 96203-900, Brazil.
| |
Collapse
|
7
|
Gill LI, Dominic C, Tiberi S. Atypical mycobacterial infections - management and when to treat. Curr Opin Pulm Med 2021; 27:216-223. [PMID: 33560672 DOI: 10.1097/mcp.0000000000000764] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE OF REVIEW Infections caused by nontuberculous mycobacteria (NTM) are increasing for several reasons, including diagnostic advances, increased awareness and a larger at-risk population. NTM pulmonary disease is surpassing tuberculosis (TB) in some low incidence areas. This review summarizes the latest literature and guidelines and aims to be a concise source outlining treatment and management of NTM lung infections, integrating established treatment paradigms with novel pharmacological interventions. RECENT FINDINGS Recent additions to NTM treatment are inhaled liposomal amikacin and the anti-TB drug bedaquiline. Several other new or repurposed treatments are being explored in vitro, in animal models and in clinical trials, including novel beta-lactamase inhibitor/lactam combinations, dual-lactam combinations, efflux pump inhibitors, novel antimicrobials, inhaled clofazimine suspension and bacteriophages. SUMMARY Patients with NTM pulmonary disease are mainly female and older with significant delay between diagnosis and treatment being common. Treatment varies according to causative organism, drug susceptibilities, radiological type and disease severity. Underlying chronic conditions, drug intolerances and interactions require careful consideration. In all cases, at least three drugs should be used to minimize acquisition of drug resistance, and all patients should receive a minimum of 12 months of treatment. Expert advice should be taken. NTM treatment is longer than TB treatment, more likely to fail and more likely to cause toxicity. The relatively small numbers of patients affected by each NTM species has limited research. Novel treatments hold promise; nevertheless, it is likely that new solutions for NTM management will stem from the TB pipeline for the foreseeable future.
Collapse
Affiliation(s)
- Laura Indira Gill
- Department of Infection, Royal London Hospital, Barts Health NHS Trust
| | - Catherine Dominic
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London
| | - Simon Tiberi
- Department of Infection, Royal London Hospital, Barts Health NHS Trust
| |
Collapse
|
8
|
Egorova A, Jackson M, Gavrilyuk V, Makarov V. Pipeline of anti-Mycobacterium abscessus small molecules: Repurposable drugs and promising novel chemical entities. Med Res Rev 2021; 41:2350-2387. [PMID: 33645845 DOI: 10.1002/med.21798] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/01/2021] [Accepted: 02/17/2021] [Indexed: 12/13/2022]
Abstract
The Mycobacterium abscessus complex is a group of emerging pathogens that are difficult to treat. There are no effective drugs for successful M. abscessus pulmonary infection therapy, and existing drug regimens recommended by the British or the American Thoracic Societies are associated with poor clinical outcomes. Therefore, novel antibacterial drugs are urgently needed to contain this global threat. The current anti-M. abscessus small-molecule drug development process can be enhanced by two parallel strategies-discovery of compounds from new chemical classes and commercial drug repurposing. This review focuses on recent advances in the finding of novel small-molecule agents, and more particularly focuses on the activity, mode of action and structure-activity relationship of promising inhibitors from five different chemical classes-benzimidazoles, indole-2-carboxamides, benzothiazoles, 4-piperidinoles, and oxazolidionones. We further discuss some other interesting small molecules, such as thiacetazone derivatives and benzoboroxoles, that are in the early stages of drug development, and summarize current knowledge about the efficacy of repurposable drugs, such as rifabutin, tedizolid, bedaquiline, and others. We finally review targets of therapeutic interest in M. abscessus that may be worthy of future drug and adjunct therapeutic development.
Collapse
Affiliation(s)
- Anna Egorova
- Research Center of Biotechnology RAS, Moscow, Russia
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Colorado, Fort Collins, USA
| | | | - Vadim Makarov
- Research Center of Biotechnology RAS, Moscow, Russia
| |
Collapse
|
9
|
Rindi L. Efflux Pump Inhibitors Against Nontuberculous Mycobacteria. Int J Mol Sci 2020; 21:ijms21124191. [PMID: 32545436 PMCID: PMC7348771 DOI: 10.3390/ijms21124191] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/12/2022] Open
Abstract
Over the last years, nontuberculous mycobacteria (NTM) have emerged as important human pathogens. Infections caused by NTM are often difficult to treat due to an intrinsic multidrug resistance for the presence of a lipid-rich outer membrane, thus encouraging an urgent need for the development of new drugs for the treatment of mycobacterial infections. Efflux pumps (EPs) are important elements that are involved in drug resistance by preventing intracellular accumulation of antibiotics. A promising strategy to decrease drug resistance is the inhibition of EP activity by EP inhibitors (EPIs), compounds that are able to increase the intracellular concentration of antimicrobials. Recently, attention has been focused on identifying EPIs in mycobacteria that could be used in combination with drugs. The aim of the present review is to provide an overview of the current knowledge on EPs and EPIs in NTM and also, the effect of potential EPIs as well as their combined use with antimycobacterial drugs in various NTM species are described.
Collapse
Affiliation(s)
- Laura Rindi
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, I-56127 Pisa, Italy
| |
Collapse
|
10
|
Guo Q, Chen J, Zhang S, Zou Y, Zhang Y, Huang D, Zhang Z, Li B, Chu H. Efflux Pumps Contribute to Intrinsic Clarithromycin Resistance in Clinical, Mycobacterium abscessus Isolates. Infect Drug Resist 2020; 13:447-454. [PMID: 32104016 PMCID: PMC7024787 DOI: 10.2147/idr.s239850] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 02/01/2020] [Indexed: 12/27/2022] Open
Abstract
Purpose The emergence of clarithromycin resistance is a challenge in treating Mycobacterium abscessus infections. Known mechanisms that contribute to intrinsic clarithromycin resistance focus on rrl gene-related mutations, but resistant clinical isolates often exhibit an inconsistent rrl genotype. Patients and Methods In this study, 194 clinical Mycobacterium abscessus isolates were collected from patients with lung infections and the whole genome of each isolate was sequenced. A comprehensive examination of the molecular mechanisms underlying intrinsic clarithromycin resistance was performed, combining MIC determination, comparative genome sequence analysis and qRT-PCR. Results Of the 194 isolates, 13 (6.7%) were clarithromycin resistant; only seven of these harbored a rrl 2270/2271 mutation. The remaining six resistant isolates did not exhibit a specific resistance-associated mutation in the clarithromycin target-site genes, rrl, rplC, rplD and rplV, or in the rrl modification gene erm(41). qRT-PCR analysis showed that the increased expression of the efflux pump genes, MAB_2355c, MAB_1409c and MAB_1846, as well as their positive regulatory gene whiB7, consistently correlated with increased clarithromycin resistance. The presence of efflux pump inhibitors significantly decreased the MIC of clarithromycin for nonsusceptible isolates, especially the intrinsic resistant isolates that exhibited no rrl 2270/2271 mutation. Conclusion These findings indicate that efflux pumps play a prominent role in the intrinsic resistance of M. abscessus to clarithromycin, complementing other known resistance mechanisms.
Collapse
Affiliation(s)
- Qi Guo
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, People's Republic of China.,Tongji University School of Medicine, Shanghai 200092, People's Republic of China
| | - Jianhui Chen
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, People's Republic of China.,Tongji University School of Medicine, Shanghai 200092, People's Republic of China
| | - Shaoyan Zhang
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, People's Republic of China
| | - Yuzhen Zou
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, People's Republic of China.,Tongji University School of Medicine, Shanghai 200092, People's Republic of China
| | - Yongjie Zhang
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, People's Republic of China.,Tongji University School of Medicine, Shanghai 200092, People's Republic of China
| | - Dongdong Huang
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, People's Republic of China
| | - Zhemin Zhang
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, People's Republic of China
| | - Bing Li
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, People's Republic of China
| | - Haiqing Chu
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, People's Republic of China.,Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, People's Republic of China
| |
Collapse
|
11
|
Ramis IB, Vianna JS, Silva Junior L, von Groll A, Ramos DF, Lobo MM, Zanatta N, Viveiros M, Silva PEAD. In silico and in vitro evaluation of tetrahydropyridine compounds as efflux inhibitors in Mycobacterium abscessus. Tuberculosis (Edinb) 2019; 118:101853. [PMID: 31430699 DOI: 10.1016/j.tube.2019.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 12/23/2022]
Abstract
Herein, we evaluated tetrahydropyridine (THP) compounds (NUNM) as antimicrobials and inhibitors of the efflux mechanism in M. abscessus. subsp. abscessus. The modulation factor (MF) of efflux inhibitors was calculated from the minimum inhibitory concentrations (MICs) of amikacin (AMI), ciprofloxacin (CIP) and clarithromycin (CLA) in the absence and presence of subinhibitory concentrations of the NUNM compounds and canonical inhibitors carbonyl cyanide m-chlorophenyl hydrazone (CCCP) and verapamil (VP). The kinetics of the intracellular accumulation of the fluorimetric substrate ethidium bromide (EtBr) was evaluated and calculated by the relative final fluorescence (RFF). In addition, molecular modeling simulations for the MmpL5 and Tap efflux transporters with ligands (CLA, NUNM, CCCP, VP and EtBr) were performed to better understand the efflux mechanism. We highlight the NUNM01 compound because it reduced the MICs of AMI, CIP and CLA by 4-, 4- and 16-fold, respectively, had the highest effect on EtBr accumulation (RFF = 3.1) and showed a significant in silico affinity for the evaluated proteins in docking simulations. Based on the analyses performed in vitro and in silico, we propose that NUNM01 is a potential pharmacophore candidate for the development of a therapeutic adjuvant for M. abscessus infections.
Collapse
Affiliation(s)
- Ivy B Ramis
- Núcleo de Pesquisa Em Microbiologia Médica, Universidade Federal de Rio Grande, Rua General Osório s/n, Rio Grande, RS, Brazil
| | - Júlia S Vianna
- Núcleo de Pesquisa Em Microbiologia Médica, Universidade Federal de Rio Grande, Rua General Osório s/n, Rio Grande, RS, Brazil.
| | - Lande Silva Junior
- Núcleo de Pesquisa Em Microbiologia Médica, Universidade Federal de Rio Grande, Rua General Osório s/n, Rio Grande, RS, Brazil; Instituto Federal Sul-rio-grandense, Pelotas, RS, Brazil
| | - Andrea von Groll
- Núcleo de Pesquisa Em Microbiologia Médica, Universidade Federal de Rio Grande, Rua General Osório s/n, Rio Grande, RS, Brazil
| | - Daniela F Ramos
- Núcleo de Pesquisa Em Microbiologia Médica, Universidade Federal de Rio Grande, Rua General Osório s/n, Rio Grande, RS, Brazil
| | - Marcio Marçal Lobo
- Núcleo de Química de Heterociclos, Departamento de Química, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Nilo Zanatta
- Núcleo de Química de Heterociclos, Departamento de Química, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Miguel Viveiros
- Unidade de Microbiologia Médica, Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Lisboa, Portugal
| | - Pedro E Almeida da Silva
- Núcleo de Pesquisa Em Microbiologia Médica, Universidade Federal de Rio Grande, Rua General Osório s/n, Rio Grande, RS, Brazil
| |
Collapse
|