1
|
Bose S, Sahu SR, Dutta A, Acharya N. A chemically induced attenuated strain of Candida albicans generates robust protective immune responses and prevents systemic candidiasis development. eLife 2024; 13:RP93760. [PMID: 38787374 PMCID: PMC11126311 DOI: 10.7554/elife.93760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
Despite current antifungal therapy, invasive candidiasis causes >40% mortality in immunocompromised individuals. Therefore, developing an antifungal vaccine is a priority. Here, we could for the first time successfully attenuate the virulence of Candida albicans by treating it with a fungistatic dosage of EDTA and demonstrate it to be a potential live whole cell vaccine by using murine models of systemic candidiasis. EDTA inhibited the growth and biofilm formation of C. albicans. RNA-seq analyses of EDTA-treated cells (CAET) revealed that genes mostly involved in metal homeostasis and ribosome biogenesis were up- and down-regulated, respectively. Consequently, a bulky cell wall with elevated levels of mannan and β-glucan, and reduced levels of total monosomes and polysomes were observed. CAET was eliminated faster than the untreated strain (Ca) as found by differential fungal burden in the vital organs of the mice. Higher monocytes, granulocytes, and platelet counts were detected in Ca- vs CAET-challenged mice. While hyper-inflammation and immunosuppression caused the killing of Ca-challenged mice, a critical balance of pro- and anti-inflammatory cytokines-mediated immune responses are the likely reasons for the protective immunity in CAET-infected mice.
Collapse
Affiliation(s)
- Swagata Bose
- Department of Infectious Disease Biology, Institute of Life SciencesBhubaneswarIndia
| | - Satya Ranjan Sahu
- Department of Infectious Disease Biology, Institute of Life SciencesBhubaneswarIndia
| | - Abinash Dutta
- Department of Infectious Disease Biology, Institute of Life SciencesBhubaneswarIndia
| | - Narottam Acharya
- Department of Infectious Disease Biology, Institute of Life SciencesBhubaneswarIndia
| |
Collapse
|
2
|
Jakab Á, Kovács F, Balla N, Nagy-Köteles C, Ragyák Á, Nagy F, Borman AM, Majoros L, Kovács R. Comparative transcriptional analysis of Candida auris biofilms following farnesol and tyrosol treatment. Microbiol Spectr 2024; 12:e0227823. [PMID: 38440972 PMCID: PMC10986546 DOI: 10.1128/spectrum.02278-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 02/11/2024] [Indexed: 03/06/2024] Open
Abstract
Candida auris is frequently associated with biofilm-related invasive infections. The resistant profile of these biofilms necessitates innovative therapeutic options, where quorum sensing may be a potential target. Farnesol and tyrosol are two fungal quorum-sensing molecules with antifungal effects at supraphysiological concentrations. Here, we performed genome-wide transcript profiling with C. auris biofilms following farnesol or tyrosol exposure using transcriptome sequencing (RNA-Seq). Since transition metals play a central role in fungal virulence and biofilm formation, levels of intracellular calcium, magnesium, and iron were determined following farnesol or tyrosol treatment using inductively coupled plasma optical emission spectrometry. Farnesol caused an 89.9% and 73.8% significant reduction in the calcium and magnesium content, respectively, whereas tyrosol resulted in 82.6%, 76.6%, and 81.2% decrease in the calcium, magnesium, and iron content, respectively, compared to the control. Genes involved in biofilm events, glycolysis, ergosterol biosynthesis, fatty acid oxidation, iron metabolism, and autophagy were primarily affected in treated cells. To prove ergosterol quorum-sensing molecule interactions, microdilution-based susceptibility testing was performed, where the complexation of farnesol, but not tyrosol, with ergosterol was impeded in the presence of exogenous ergosterol, resulting in a minimum inhibitory concentration increase in the quorum-sensing molecules. This study revealed several farnesol- and tyrosol-specific responses, which will contribute to the development of alternative therapies against C. auris biofilms. IMPORTANCE Candida auris is a multidrug-resistant fungal pathogen, which is frequently associated with biofilm-related infections. Candida-derived quorum-sensing molecules (farnesol and tyrosol) play a pivotal role in the regulation of fungal morphogenesis and biofilm development. Furthermore, they may have remarkable anti-biofilm effects, especially at supraphysiological concentrations. Innovative therapeutic approaches interfering with quorum sensing may be a promising future strategy against C. auris biofilms; however, limited data are currently available concerning farnesol-induced and tyrosol-related molecular effects in C. auris. Here, we detected several genes involved in biofilm events, glycolysis, ergosterol biosynthesis, fatty acid oxidation, iron metabolism, and autophagy, which were primarily influenced following farnesol or tyrosol exposure. Moreover, calcium, magnesium, and iron homeostasis were also significantly affected. These results reveal those molecular and physiological events, which may support the development of novel therapeutic approaches against C. auris biofilms.
Collapse
Affiliation(s)
- Ágnes Jakab
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Fruzsina Kovács
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Debrecen, Hungary
| | - Noémi Balla
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Debrecen, Hungary
| | - Csaba Nagy-Köteles
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Ágota Ragyák
- Department of Inorganic and Analytical Chemistry, Agilent Atomic Spectroscopy Partner Laboratory, University of Debrecen, Debrecen, Hungary
| | - Fruzsina Nagy
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andrew M. Borman
- UK National Mycology Reference Laboratory, UK Health Security Agency, Science Quarter, Southmead Hospital, Bristol, United Kingdom
- Medical Research Council Centre for Medical Mycology (MRCCMM), University of Exeter, Exeter, United Kingdom
| | - László Majoros
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Renátó Kovács
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
3
|
Fatima T, Fatima Z, Hameed S. Abrogation of efflux pump activity, biofilm formation, and immune escape by candidacidal geraniol in emerging superbug, Candida auris. Int Microbiol 2023; 26:881-891. [PMID: 36847907 DOI: 10.1007/s10123-023-00343-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 02/07/2023] [Accepted: 02/16/2023] [Indexed: 03/01/2023]
Abstract
During the last decade, Candida auris emerged as a threatening human fungal pathogen that notably caused outbreaks around the globe with high mortality. Considering C. auris species as newly discovered fungi, the evolutionary features remain elusive. The antifungal resistance which is a norm in C. auris underlines the need for innovative therapeutic options. ATP Binding Cassette (ABC) superfamily efflux pumps overexpression and biofilms are known to be major contributors to multidrug resistance (MDR) in C. auris. Therefore, herein, we investigated the antifungal potential of geraniol (Ger) as a promising natural compound in the fight against MDR C. auris. Our experiments proved that Ger was fungicidal in nature and impaired rhodamine 6G (R6G) efflux, confirming the specific effect on ABC transporters. Kinetic studies unravelled the competitive mode of inhibition by Ger for R6G efflux since the apparent Km increased with no change in Vmax value. Mechanistic insights also revealed that Ger depleted ergosterol content in C. auris. Furthermore, Ger led to inhibition in biofilm formation as evident from crystal violet staining, biofilm metabolic and biomass measurements. Additionally, enhanced survival of Caenorhabditis elegans model after C. auris infection demonstrated the in vivo efficacy of Ger. Lastly, the in vivo efficacy was confirmed from a THP-1 cell line model which depicted enhanced macrophage-mediated killing in the presence of Ger. Modulation of C. auris efflux pump activity and biofilm formation by Ger represents a promising approach to combat MDR. Together, this study demonstrated the potential therapeutic insights of Ger as a promising addition to the antifungal armamentarium required to treat emerging and resistant C. auris.
Collapse
Affiliation(s)
- Tazeen Fatima
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar), - 122413, India
| | - Zeeshan Fatima
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar), - 122413, India.
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, - 61922, Saudi Arabia.
| | - Saif Hameed
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar), - 122413, India.
| |
Collapse
|
4
|
Aoki K, Yamamoto K, Ohkuma M, Sugita T, Tanaka N, Takashima M. Hyphal Growth in Trichosporon asahii Is Accelerated by the Addition of Magnesium. Microbiol Spectr 2023; 11:e0424222. [PMID: 37102973 PMCID: PMC10269644 DOI: 10.1128/spectrum.04242-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/10/2023] [Indexed: 04/28/2023] Open
Abstract
Fungal dimorphism involves two morphologies: a unicellular yeast cell and a multicellular hyphal form. Invasion of hyphae into human cells causes severe opportunistic infections. The transition between yeast and hyphal forms is associated with the virulence of fungi; however, the mechanism is poorly understood. Therefore, we aimed to identify factors that induce hyphal growth of Trichosporon asahii, a dimorphic basidiomycete that causes trichosporonosis. T. asahii showed poor growth and formed small cells containing large lipid droplets and fragmented mitochondria when cultivated for 16 h in a nutrient-deficient liquid medium. However, these phenotypes were suppressed via the addition of yeast nitrogen base. When T. asahii cells were cultivated in the presence of different compounds present in the yeast nitrogen base, we found that magnesium sulfate was a key factor for inducing cell elongation, and its addition dramatically restored hyphal growth in T. asahii. In T. asahii hyphae, vacuoles were enlarged, the size of lipid droplets was decreased, and mitochondria were distributed throughout the cell cytoplasm and adjacent to the cell walls. Additionally, hyphal growth was disrupted due to treatment with an actin inhibitor. The actin inhibitor latrunculin A disrupted the mitochondrial distribution even in hyphal cells. Furthermore, magnesium sulfate treatment accelerated hyphal growth in T. asahii for 72 h when the cells were cultivated in a nutrient-deficient liquid medium. Collectively, our results suggest that an increase in magnesium levels triggers the transition from the yeast to hyphal form in T. asahii. These findings will support studies on the pathogenesis of fungi and aid in developing treatments. IMPORTANCE Understanding the mechanism underlying fungal dimorphism is crucial to discern its invasion into human cells. Invasion is caused by the hyphal form rather than the yeast form; therefore, it is important to understand the mechanism of transition from the yeast to hyphal form. To study the transition mechanism, we utilized Trichosporon asahii, a dimorphic basidiomycete that causes severe trichosporonosis since there are fewer studies on T. asahii than on ascomycetes. This study suggests that an increase in Mg2+, the most abundant mineral in living cells, triggers growth of filamentous hyphae and increases the distribution of mitochondria throughout the cell cytoplasm and adjacent to the cell walls in T. asahii. Understanding the mechanism of hyphal growth triggered by Mg2+ increase will provide a model system to explore fungal pathogenicity in the future.
Collapse
Affiliation(s)
- Keita Aoki
- Laboratory of Yeast Systematics, Tokyo NODAI Research Institute, Tokyo University of Agriculture, Setagaya, Tokyo, Japan
| | - Kosuke Yamamoto
- Department of Molecular Microbiology, Faculty of Life Sciences, Tokyo University of Agriculture, Setagaya, Tokyo, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Takashi Sugita
- Department of Microbiology, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Naoto Tanaka
- Department of Molecular Microbiology, Faculty of Life Sciences, Tokyo University of Agriculture, Setagaya, Tokyo, Japan
| | - Masako Takashima
- Laboratory of Yeast Systematics, Tokyo NODAI Research Institute, Tokyo University of Agriculture, Setagaya, Tokyo, Japan
| |
Collapse
|
5
|
Hans S, Fatima Z, Ahmad A, Hameed S. Magnesium impairs Candida albicans immune evasion by reduced hyphal damage, enhanced β-glucan exposure and altered vacuole homeostasis. PLoS One 2022; 17:e0270676. [PMID: 35834579 PMCID: PMC9282612 DOI: 10.1371/journal.pone.0270676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/14/2022] [Indexed: 11/18/2022] Open
Abstract
With a limited arsenal of available antifungal drugs and drug-resistance emergence, strategies that seek to reduce Candida immune evasion and virulence could be a promising alternative option. Harnessing metal homeostasis against C. albicans has gained wide prominence nowadays as a feasible antifungal strategy. Herein, the effect of magnesium (Mg) deprivation on the immune evasion mechanisms of C. albicans is demonstrated. We studied host pathogen interaction by using the THP-1 cell line model and explored the avenue that macrophage-mediated killing was enhanced under Mg deprivation, leading to altered cytokine (TNFα, IL-6 and IL10) production and reduced pyroptosis. Insights into the mechanisms revealed that hyphal damage inside the macrophage was diminished under Mg deprivation. Additionally, Mg deprivation led to cell wall remodelling; leading to enhanced β-1,3-glucan exposure, crucial for immune recognition, along with concomitant alterations in chitin and mannan levels. Furthermore, vacuole homeostasis was disrupted under Mg deprivation, as revealed by abrogated morphology and defective acidification of the vacuole lumen. Together, we demonstrated that Mg deprivation affected immune evasion mechanisms by: reduced hyphal damage, enhanced β-1,3-glucan exposure and altered vacuole functioning. The study establishes that Mg availability is indispensable for successful C. albicans immune evasion and specific Mg dependent pathways could be targeted for therapy.
Collapse
Affiliation(s)
- Sandeep Hans
- Amity Institute of Biotechnology, Amity University Haryana, Manesar, Gurugram, India
| | - Zeeshan Fatima
- Amity Institute of Biotechnology, Amity University Haryana, Manesar, Gurugram, India
- * E-mail: (ZF); (SH)
| | - Aijaz Ahmad
- Clinical Microbiology and Infectious Diseases, Faculty of Health Sciences, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Infection Control, National Health Laboratory Service, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg, South Africa
| | - Saif Hameed
- Amity Institute of Biotechnology, Amity University Haryana, Manesar, Gurugram, India
- * E-mail: (ZF); (SH)
| |
Collapse
|
6
|
Bohner F, Papp C, Gácser A. The effect of antifungal resistance development on the virulence of Candida species. FEMS Yeast Res 2022; 22:6552956. [PMID: 35325128 PMCID: PMC9466593 DOI: 10.1093/femsyr/foac019] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/24/2022] [Accepted: 03/21/2022] [Indexed: 11/12/2022] Open
Abstract
In recent years, the relevance of diseases associated with fungal pathogens increased worldwide. Members of the Candida genus are responsible for the greatest number of fungal bloodstream infections every year. Epidemiological data consistently indicate a modest shift toward non-albicans species, albeit Candidaalbicans is still the most recognizable species within the genus. As a result, the number of clinically relevant pathogens has increased, and, despite their distinct pathogenicity features, the applicable antifungal agents remained the same. For bloodstream infections, only three classes of drugs are routinely used, namely polyenes, azoles and echinocandins. Antifungal resistance toward all three antifungal drug classes frequently occurs in clinical settings. Compared with the broad range of literature on virulence and antifungal resistance of Candida species separately, only a small portion of studies examined the effect of resistance on virulence. These studies found that resistance to polyenes and echinocandins concluded in significant decrease in the virulence in different Candida species. Meanwhile, in some cases, resistance to azole type antifungals resulted in increased virulence depending on the species and isolates. These findings underline the importance of studies aiming to dissect the connections of virulence and resistance in Candida species.
Collapse
Affiliation(s)
- Flora Bohner
- HCEMM-USZ Fungal Pathogens Research Group, Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Csaba Papp
- HCEMM-USZ Fungal Pathogens Research Group, Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Attila Gácser
- HCEMM-USZ Fungal Pathogens Research Group, Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary.,MTA-SZTE "Lendület" Mycobiome Research Group, University of Szeged, Szeged, Hungary
| |
Collapse
|
7
|
Yang J, Yang XL, Su YB, Peng XX, Li H. Activation of the TCA Cycle to Provide Immune Protection in Zebrafish Immunized by High Magnesium-Prepared Vibrio alginolyticus Vaccine. Front Immunol 2021; 12:739591. [PMID: 34950133 PMCID: PMC8688852 DOI: 10.3389/fimmu.2021.739591] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
Vaccines are safe and efficient in controlling bacterial diseases in the aquaculture industry and are in line with green farming. The present study develops a previously unreported approach to prepare a live-attenuated V. alginolyticus vaccine by culturing bacteria in a high concentration of magnesium to attenuate bacterial virulence. Furthermore, metabolomes of zebrafish immunized with the live-attenuated vaccines were compared with those of survival and dying zebrafish infected by V. alginolyticus. The enhanced TCA cycle and increased fumarate were identified as the most key metabolic pathways and the crucial biomarker of vaccine-mediated and survival fish, respectively. Exogenous fumarate promoted expression of il1β, il8, il21, nf-κb, and lysozyme in a dose-dependent manner. Among the five innate immune genes, the elevated il1β, il8, and lysozyme are overlapped in the vaccine-immunized zebrafish and the survival from the infection. These findings highlight a way in development of vaccines and exploration of the underlying mechanisms.
Collapse
Affiliation(s)
- Jun Yang
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiao-Li Yang
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yu-Bin Su
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xuan-Xian Peng
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Hui Li
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
8
|
Ahamefule CS, Ezeuduji BC, Ogbonna JC, Moneke AN, Ike AC, Jin C, Wang B, Fang W. Caenorhabditis elegans as an Infection Model for Pathogenic Mold and Dimorphic Fungi: Applications and Challenges. Front Cell Infect Microbiol 2021; 11:751947. [PMID: 34722339 PMCID: PMC8554291 DOI: 10.3389/fcimb.2021.751947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
The threat burden from pathogenic fungi is universal and increasing with alarming high mortality and morbidity rates from invasive fungal infections. Understanding the virulence factors of these fungi, screening effective antifungal agents and exploring appropriate treatment approaches in in vivo modeling organisms are vital research projects for controlling mycoses. Caenorhabditis elegans has been proven to be a valuable tool in studies of most clinically relevant dimorphic fungi, helping to identify a number of virulence factors and immune-regulators and screen effective antifungal agents without cytotoxic effects. However, little has been achieved and reported with regard to pathogenic filamentous fungi (molds) in the nematode model. In this review, we have summarized the enormous breakthrough of applying a C. elegans infection model for dimorphic fungi studies and the very few reports for filamentous fungi. We have also identified and discussed the challenges in C. elegans-mold modeling applications as well as the possible approaches to conquer these challenges from our practical knowledge in C. elegans-Aspergillus fumigatus model.
Collapse
Affiliation(s)
- Chukwuemeka Samson Ahamefule
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, China.,College of Life Science and Technology, Guangxi University, Nanning, China.,Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| | | | - James C Ogbonna
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| | - Anene N Moneke
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| | - Anthony C Ike
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| | - Cheng Jin
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, China.,College of Life Science and Technology, Guangxi University, Nanning, China
| | - Bin Wang
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, China.,State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, China
| | - Wenxia Fang
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, China.,State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, China
| |
Collapse
|
9
|
Wijnants S, Vreys J, Van Dijck P. Interesting antifungal drug targets in the central metabolism of Candida albicans. Trends Pharmacol Sci 2021; 43:69-79. [PMID: 34756759 DOI: 10.1016/j.tips.2021.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 01/04/2023]
Abstract
To treat infections caused by Candida albicans, azoles, polyenes, and echinocandins are used. However, resistance occurs against all three, so there is an urgent need for new antifungal drugs with a novel mode of action. Recently, it became clear that central metabolism plays an important role in the virulence of C. albicans. Glycolysis is, for example, upregulated during virulence conditions, whereas the glyoxylate cycle is important upon phagocytosis by host immune cells. These findings indicate that C. albicans adapts its metabolism to the environment for maximal virulence. In this review, we provide an overview of the potency of different central metabolic pathways and their key enzymes as potential antifungal drug targets.
Collapse
Affiliation(s)
- Stefanie Wijnants
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Leuven, Belgium; VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Jolien Vreys
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Leuven, Belgium; VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Leuven, Belgium; VIB-KU Leuven Center for Microbiology, Leuven, Belgium.
| |
Collapse
|
10
|
Hans S, Fatima Z, Hameed S. Mass spectrometry-based untargeted lipidomics reveals new compositional insights into membrane dynamics of Candida albicans under magnesium deprivation. J Appl Microbiol 2021; 132:978-993. [PMID: 34424599 DOI: 10.1111/jam.15265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/16/2021] [Accepted: 08/18/2021] [Indexed: 11/29/2022]
Abstract
AIMS There is growing appreciation in adopting new approaches to disrupt multidrug resistance in human fungal pathogen, Candida albicans. The plasma membrane of C. albicans comprises potential lipid moieties that contribute towards the survival of pathogen and could be utilized as antifungal targets. Considering promising applications of developments in mass spectrometry (MS)-based lipidomics technology, the aim of the study was to analyse lipidome profile and expose lipid-dependent changes in response to Mg deprivation. METHODS AND RESULTS We found that both phosphatidylcholine (PC) and lysophosphatidylcholine (LysoPC) were decreased. Increased flip (inward translocation) in the fluorophore labelled NBD-PC was ascribed to enhanced PC-specific flippase activity. Furthermore, a decrease in phosphatidylethanolamine (PE) leading to altered membrane fluidity and loss of cellular material was prominent. Additionally, we observed decreased phosphatidylglycerol (PG) and phosphatidylinositol (PI) leading to genotoxic stress. Besides, we could detect enhanced levels of phosphatidylserine (PS), diacylglycerol (DAG) and triacylglycerides (TAG). The altered gene expressions of lipid biosynthetic pathway by RT-PCR correlated with the lipidome profile. Lastly, we explored abrogated ionic (Na+ and K+ ) transport across the plasma membrane. CONCLUSIONS We propose that C. albicans exposed to Mg deprivation could reorganize plasma membrane (lipid species, membrane fluidity and ionic transport), and possibly redirected carbon flux to store energy in TAGs as an adaptive stress response. This work unravels several vulnerable targets governing lipid metabolism in C. albicans and pave way for better antifungal strategies. SIGNIFICANCE AND IMPACT OF THE STUDY This study demonstrates that magnesium availability is important when one considers dissecting drug resistance mechanisms in Candida albicans. Through mass spectrometry (MS)-based lipidomics technology, the study analyses lipidome profile and exposes lipid-dependent changes that are vulnerable to magnesium availability and presents an opportunity to employ this new information in improving treatment strategies.
Collapse
Affiliation(s)
- Sandeep Hans
- Amity Institute of Biotechnology, Amity University Haryana, Manesar, Gurugram, India
| | - Zeeshan Fatima
- Amity Institute of Biotechnology, Amity University Haryana, Manesar, Gurugram, India
| | - Saif Hameed
- Amity Institute of Biotechnology, Amity University Haryana, Manesar, Gurugram, India
| |
Collapse
|
11
|
Insights into the modulatory effect of magnesium on efflux mechanisms of Candida albicans reveal inhibition of ATP binding cassette multidrug transporters and dysfunctional mitochondria. Biometals 2021; 34:329-339. [PMID: 33394279 DOI: 10.1007/s10534-020-00282-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/21/2020] [Indexed: 10/22/2022]
Abstract
Candida infections pose a serious hazard to public health followed by widespread and prolonged deployment of antifungal drugs has which has led multidrug resistance (MDR) progress in prevalent human fungal pathogen, Candida albicans. Despite the fact that MDR is multifactorial phenomenon govern by several mechanisms in C. albicans, overexpression of drug efflux transporters by far remains the leading cause of MDR govern by ATP Binding Cassette (ABC) or major facilitator superfamily (MFS) transporters. Hence searching for strategies to target efflux pumps transporter still signifies a promising approach. In this study we analyzed the effect of magnesium (Mg) deprivation, on efflux pump action of C. albicans. We explored that Mg deprivation specially inhibits efflux of transporters (CaCdr1p and CaCdr2p) belonging to ABC superfamily as revealed by rhodamine 6G and Nile red accumulation. Furthermore, Mg deprivation causes mislocalization of CaCdr1p and CaCdr2p and reduced transcripts of CDR1 and CDR2 with no effect on CaMdr1p. Additionally, Mg deprivation causes depletion of ergosterol content in azole sensitive and resistant clinical matched pair of isolates Gu4/Gu5 and F2/F5 of C. albicans. Lastly, we observed that Mg deprivation impairs mitochondrial potential which could be the causal reason for abrogated efflux activity. With growing appreciation of manipulating metal homeostasis to combat MDR, inhibition of efflux activity under Mg deprivation warrants further studies to be utilized as an effective antifungal strategy.
Collapse
|
12
|
Hans S, Purkait D, Nandan S, Bansal M, Hameed S, Fatima Z. Rec A disruption unveils cross talk between DNA repair and membrane damage, efflux pump activity, biofilm formation in Mycobacterium smegmatis. Microb Pathog 2020; 149:104262. [PMID: 32439563 DOI: 10.1016/j.micpath.2020.104262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 10/24/2022]
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis (MTB) has emerged in recent decades as one of the leading causes of mortality worldwide. The burden of TB is alarmingly high, with one third affected global population as reported by WHO. Short-course treatment with an antibiotic is a powerful weapon to treat infection of susceptible MTB strain, however; MTB has developed resistance to anti-TB drugs, which is an escalating global health crisis. Thus there is urgent need to identify new drug targets. RecA is a 38 kilodalton protein required for the repair and maintenance of DNA and regulation of the SOS response. The objective of this study is to understand the effect of disruption of RecA gene (deletion mutant ΔdisA from previous study) in a surrogate model for MTB, Mycobacterium smegmatis. This study demonstrated that disruption of RecA causes enhanced susceptibility towards rifampicin and generation of ROS leading to lipid peroxidation and impaired membrane homeostasis as depicted by altered cell membrane permeability and efflux pump activity. Mass spectrometry based lipidomic analysis revealed decreased mycolic acid moieties, phosphatidylinositol mannosides (PIM), Phthiocerol dimycocerosate (DIM). Furthermore, biofilm formation was considerably reduced. Additionally, we have validated all the disrupted phenotypes by RT-PCR which showed a good correlation with the biochemical assays. Lastly, RecA mutant displayed reduced infectivity in Caenorhabditis elegans illustrating its vulnerability as antimycobacterial target. Together, present study establishes a link between DNA repair, drug efflux and biofilm formation and validates RecA as an effective drug target. Intricate studies are needed to further understand and exploit this therapeutic opportunity.
Collapse
Affiliation(s)
- Sandeep Hans
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram, Manesar, 122413, India
| | - Dyuti Purkait
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram, Manesar, 122413, India
| | - Shiv Nandan
- Amity Lipidomics Research Facility, Amity University Haryana, Gurugram, Manesar, 122413, India
| | - Maghav Bansal
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram, Manesar, 122413, India
| | - Saif Hameed
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram, Manesar, 122413, India.
| | - Zeeshan Fatima
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram, Manesar, 122413, India.
| |
Collapse
|
13
|
Ribeiro F, Rossoni R, Barros P, Santos J, Fugisaki L, Leão M, Junqueira J. Action mechanisms of probiotics on
Candida
spp. and candidiasis prevention: an update. J Appl Microbiol 2019; 129:175-185. [DOI: 10.1111/jam.14511] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 10/18/2019] [Accepted: 10/30/2019] [Indexed: 12/19/2022]
Affiliation(s)
- F.C. Ribeiro
- Department of Biosciences and Oral Diagnosis Institute of Science and Technology São Paulo State University/UNESP Sao Jose dos Campos Brazil
| | - R.D. Rossoni
- Department of Biosciences and Oral Diagnosis Institute of Science and Technology São Paulo State University/UNESP Sao Jose dos Campos Brazil
| | - P.P. Barros
- Department of Biosciences and Oral Diagnosis Institute of Science and Technology São Paulo State University/UNESP Sao Jose dos Campos Brazil
| | - J.D. Santos
- Department of Biosciences and Oral Diagnosis Institute of Science and Technology São Paulo State University/UNESP Sao Jose dos Campos Brazil
| | - L.R.O. Fugisaki
- Department of Biosciences and Oral Diagnosis Institute of Science and Technology São Paulo State University/UNESP Sao Jose dos Campos Brazil
| | - M.P.V. Leão
- Bioscience Basic Institute University of Taubaté Bom Conselho Taubaté SP Brazil
| | - J.C. Junqueira
- Department of Biosciences and Oral Diagnosis Institute of Science and Technology São Paulo State University/UNESP Sao Jose dos Campos Brazil
| |
Collapse
|