1
|
Wu Z, Gou R, Sha L, Yu C, Meng L, Jin Z. Effects of Luteolin-7-O-Glucoside on Intestinal Microbiota Dysbiosis and Drug Resistance Transmission Caused by Raoultella ornithinolytica B1645-1: Modulating the Composition of Intestinal Microbiota and Promoting the Transfer of blaNDM-1 Gene from Genus Enterococcus to Lactobacillus in Mice. Microorganisms 2023; 11:2477. [PMID: 37894135 PMCID: PMC10609467 DOI: 10.3390/microorganisms11102477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Raoultella ornithinolytica is an Enterobacteriaceae bacterium that can infect both humans and animals, while luteolin-7-O-glucoside (IOG) is a flavonoid that has broad effects on the intestinal microbiota of healthy animals. However, current studies lack sufficient data on intestinal microbiota dysbiosis and drug resistance transmission caused by R. ornithinolytica and the possible role of IOG. In this study, BALB/c mice were infected with R. ornithinolytica carrying blaNDM-1 gene and treated with IOG (3 mg/kg·d and 6 mg/kg·d) to analyze the diversity of intestinal microbiota and the transfer of blaNDM-1 between bacteria. The findings indicated that R. ornithinolytica B1645-1 exhibited a significant ability to enhance the Firmicutes/Bacteroidota ratio and increase the relative abundance of Lactobacillus and Bacillus after 48 h, where as 6 mg/kg·d IOG had an opposite effect. Moreover, R. ornithinolytica B1645-1 facilitated the emergence of drug-resistant bacteria and promoted blaNDM-1 gene transfer in Enterococcus, Escherichia, Klebsiella, Acinetobacter, Bacillus, Brevibacterium, and Lactobacillus. Enterococcus was the predominant genus at 48 h. Surprisingly, 6 mg/kg·d IOG significantly inhibited the production of drug-resistant bacteria and promoted blaNDM-1 gene transfer from Enterococcus to Lactobacillus at 144 h. However, the role of Lactobacillus as a recipient for drug-resistant genes should be of more concern.
Collapse
Affiliation(s)
- Zhaomeng Wu
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China; (Z.W.); (R.G.); (L.S.); (C.Y.)
| | - Ronghui Gou
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China; (Z.W.); (R.G.); (L.S.); (C.Y.)
| | - Longhua Sha
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China; (Z.W.); (R.G.); (L.S.); (C.Y.)
| | - Chunfang Yu
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China; (Z.W.); (R.G.); (L.S.); (C.Y.)
| | - Lixue Meng
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China; (Z.W.); (R.G.); (L.S.); (C.Y.)
| | - Zhixiong Jin
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China; (Z.W.); (R.G.); (L.S.); (C.Y.)
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan 442000, China
| |
Collapse
|
2
|
Meletis G, Malousi A, Tychala A, Kassomenaki A, Vlachodimou N, Mantzana P, Metallidis S, Skoura L, Protonotariou E. Probable Three-Species In Vivo Transfer of blaNDM-1 in a Single Patient in Greece: Occurrence of NDM-1-Producing Klebsiella pneumoniae, Proteus mirabilis, and Morganella morganii. Antibiotics (Basel) 2023; 12:1206. [PMID: 37508302 PMCID: PMC10376024 DOI: 10.3390/antibiotics12071206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
NDM carbapenemase-encoding genes disseminate commonly among Enterobacterales through transferable plasmids carrying additional resistance determinants. Apart from the intra-species dissemination, the inter-species exchange of plasmids seems to play an additional important role in the spread of blaNDM. We here present the genetics related to the isolation of three species (Klebsiella pneumoniae, Proteus mirabilis, and Morganella morganii) harboring the blaNDM-1 gene from a single patient in Greece. Bacterial identification and antimicrobial susceptibility testing were performed using the Vitek2. Whole genome sequencing and bioinformatic tools were used to identify resistance genes and plasmids. BlaNDM-1 harboring plasmids were found in all three isolates. Moreover, the plasmid constructs of the respective incomplete or circular contigs showed that the blaNDM-1 and its neighboring genes form a cluster that was found in all isolates. Our microbiological findings, together with the patient's history, suggest the in vivo transfer of the blaNDM-1-containing cluster through three different species in a single patient.
Collapse
Affiliation(s)
- Georgios Meletis
- Department of Microbiology, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Andigoni Malousi
- Laboratory of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Areti Tychala
- Department of Microbiology, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Angeliki Kassomenaki
- Department of Microbiology, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Nikoletta Vlachodimou
- Department of Microbiology, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Paraskevi Mantzana
- Department of Microbiology, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Simeon Metallidis
- First Department of Internal Medicine, Infectious Diseases Division, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Lemonia Skoura
- Department of Microbiology, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Efthymia Protonotariou
- Department of Microbiology, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| |
Collapse
|
3
|
Zhao Q, Sha L, Wu Z, Meng L, Yang F, Wu L, Yu C, Zhang H, Yu J, Jin Z. Evolution of carbapenem resistance in klebsiella pneumoniae and escherichia coli carrying bla NDM-1 gene: imipenem exposure results in sustained resistance memory of strains in vitro. Ann Clin Microbiol Antimicrob 2023; 22:46. [PMID: 37308958 DOI: 10.1186/s12941-023-00598-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 05/29/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Antibiotics exert an outstanding selective pressure on bacteria, forcing their chromosomal gene mutations and drug resistance genes to spread. The objective of this study is to evaluate the expression of the New Delhi Metallo-β-Lactamase-1 gene (blaNDM-1) in the clinical isolate (Klebsiella pneumoniae TH-P12158), transformant strains Escherichia coli BL21 (DE3)-blaNDM-1, and Escherichia coli DH5α- blaNDM-1 when exposed to imipenem. METHODS β-Lactamase genes (blaSHV, blaTEM-1, blaCTX-M-9, blaIMP, blaNDM-1, blaKPC, blaOXA, blaGES, and blaDHA) from randomly selected carbapenems-sensitive K.pneumoniae (n = 20) and E.coli (n = 20) strains were amplified by PCR. The recombinant plasmid of pET-28a harboring blaNDM-1 was transformed into E.coli BL21 (DE3) and E.coli DH5α by electroporation. The resistance phenotype and higher blaNDM-1 expression in K.pneumoniae TH-P12158, transformant E.coli BL21 (DE3)-blaNDM-1, and E.coli DH5α-blaNDM-1 were observed when exposed to imipenem with grade increasing, decreasing, and canceling doses, respectively. RESULTS After being exposed to different doses of imipenem, the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of antimicrobial drugs and blaNDM-1 expression of strains increased, which was positively correlated with doses of imipenem. On the contrary, with the decrease or cancellation of imipenem doses, the blaNDM-1 expression was deteriorated, while the MIC and MBC values remained relatively stable. These results demonstrated that low doses of imipenem (˂MIC) could press blaNDM-1 positive strains producing stable drug resistance memory and altered blaNDM-1 expression. CONCLUSIONS Low doses of imipenem could press blaNDM-1 positive strains producing sustained resistance memory and altered blaNDM-1 expression. In particular, the positive correlation between the resistance genes expression and antibiotics exposure shows promising guiding significance for clinical medication.
Collapse
Affiliation(s)
- Qiong Zhao
- Department of Microbiology, School of Basic Medical Sciences, Hubei University of Medicine, Hubei, 442000, Shiyan, China
| | - Longhua Sha
- Department of Microbiology, School of Basic Medical Sciences, Hubei University of Medicine, Hubei, 442000, Shiyan, China
| | - Zhaomeng Wu
- Department of Microbiology, School of Basic Medical Sciences, Hubei University of Medicine, Hubei, 442000, Shiyan, China
| | - Lixue Meng
- Department of Microbiology, School of Basic Medical Sciences, Hubei University of Medicine, Hubei, 442000, Shiyan, China
| | - Feixiang Yang
- Department of Clinical Laboratory, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei, Shiyan, 442008, China
| | - Lingling Wu
- Department of Clinical Laboratory, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei, Shiyan, 442008, China
| | - Chunfang Yu
- Department of Microbiology, School of Basic Medical Sciences, Hubei University of Medicine, Hubei, 442000, Shiyan, China
| | - Hua Zhang
- Department of Clinical Laboratory, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei, Shiyan, 442008, China.
| | - Jingdan Yu
- Laboratory Medicine, Wuhan Asia General Hospital, Hubei, Wuhan, 430050, China.
| | - Zhixiong Jin
- Department of Microbiology, School of Basic Medical Sciences, Hubei University of Medicine, Hubei, 442000, Shiyan, China.
- Department of Clinical Laboratory, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei, Shiyan, 442008, China.
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Hubei, 442000, Shiyan, China.
| |
Collapse
|
4
|
Wu Y, Xiang L, Wang H, Ma L, Qiu X, Liu D, Feng L, Lu X. Transcriptome analysis of an arsenite-/antimonite-oxidizer, Bosea sp. AS-1 reveals the importance of the type 4 secretion system in antimony resistance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154168. [PMID: 35231521 DOI: 10.1016/j.scitotenv.2022.154168] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Bosea sp. AS-1 is an arsenite [As(III)] and antimonite [Sb(III)] oxidizer previously isolated by our group from the Xikuangshan Antimony (Sb) Mine area. Our previous study showed that Bosea sp. AS-1 had a preference for oxidizing As(III) or Sb(III) with different carbon sources, which suggested that different metabolic mechanisms may be utilized by the bacteria to survive in As(III)- or Sb(III)-contaminated environments. Here, we conducted whole-genome and transcriptome sequencing to reveal the molecular mechanisms utilized by Bosea sp. AS-1 to resist As(III) or Sb(III). We discovered that AS-1 acquired various As- and Sb-resistant genes in its genome and might resist As(III) or Sb(III) through the regulation of multiple pathways, such as As and Sb metabolism, the bacterial secretion system, oxidative phosphorylation, the TCA cycle and bacterial flagellar motility. Interestingly, we discovered that genes of the type IV secretion system (T4SS) were activated in response to Sb(III), and inhibiting T4SS activity in AS-1 dramatically reduced its oxidation efficiency and tolerance to Sb(III). To our knowledge, this is the first study showing the activation of T4SS genes by Sb and a direct involvement of T4SS in bacterial Sb resistance. Our findings establish the T4SS as an important Sb resistance factor in bacteria and may help us understand the spread of Sb resistance genes in the environment.
Collapse
Affiliation(s)
- Yanmei Wu
- School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, China
| | - Li Xiang
- School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, China
| | - Hongmei Wang
- School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, China; State Key Laboratory of Biogeology and Environmental Geology, China University of China (Wuhan), Wuhan 430074, China
| | - Liyuan Ma
- School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, China
| | - Xuan Qiu
- State Key Laboratory of Biogeology and Environmental Geology, China University of China (Wuhan), Wuhan 430074, China
| | - Deng Liu
- School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, China
| | - Liang Feng
- School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, China
| | - Xiaolu Lu
- School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, China.
| |
Collapse
|