1
|
Kozhakhmetova S, Bekbayeva A, Zholdybayeva E, Krivoruchko T, Dashevskaya N, Mukhanbetzhanova Z, Vinogradova E, Kushugulova A, Kozhakhmetov S. Subinhibitory concentrations of meropenem stimulate membrane vesicle production and modulate immune response in Bacteroides fragilis infection. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100294. [PMID: 39525957 PMCID: PMC11546947 DOI: 10.1016/j.crmicr.2024.100294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
This study explores an adaptation mechanism of Bacteroides fragilis to subinhibitory concentrations of meropenem, characterized by an alteration in the production of membrane vesicles (MVs) and modulation of the host inflammatory response. Using a rat model of infection, we demonstrated a significant increase in the size of MVs accompanied by a nonsignificant increase in their number in the meropenem-treated group compared to the infected control. Both infected groups showed significantly altered hematological parameters and shifts in monocyte on day 8 (average increase of 21.5 %). At the same time, significant changes in neutrophils (decrease by 26 %) and eosinophils (increase by 3 %) were observed only in the infected group but not in the infected meropenem-treated group. On day 16, increased macrophage activation, neovascularization, and fibrosis were observed in the tissues of the antibiotic-treated group. Immunological profile analysis revealed a slight increase in the levels of pro-inflammatory cytokines (IL-5, IL-6, IFN-γ and G-CSF) on day 8 of the experiment, followed by a sharp decrease on day 16 in both infected groups compared to the negative control. At the same time, network analysis of correlations between these immunological factors showed complex changes in response to subinhibitory concentrations of meropenem. The bacterial load did not differ between the infected groups on days 8 and 16, but only in the meropenem-free group a significant decrease in the number of bacteria was observed on day 16 in all samples. These findings suggest that subinhibitory antibiotic concentrations can influence the pathophysiological progression of B. fragilis infection, modulating both the bacterial response and the host immune reaction, potentially leading to a more complex and chronic disease course.
Collapse
Affiliation(s)
- Saniya Kozhakhmetova
- National Scientific Shared Laboratory of Biotechnology, National Center for Biotechnology, Astana, Kazakhstan
| | - Ayazhan Bekbayeva
- National Scientific Shared Laboratory of Biotechnology, National Center for Biotechnology, Astana, Kazakhstan
| | - Elena Zholdybayeva
- National Scientific Shared Laboratory of Biotechnology, National Center for Biotechnology, Astana, Kazakhstan
| | - Tatyana Krivoruchko
- National Scientific Shared Laboratory of Biotechnology, National Center for Biotechnology, Astana, Kazakhstan
| | - Natalya Dashevskaya
- National Scientific Shared Laboratory of Biotechnology, National Center for Biotechnology, Astana, Kazakhstan
| | - Zhanel Mukhanbetzhanova
- Laboratory of Microbiome, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Elizaveta Vinogradova
- Laboratory of Microbiome, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Almagul Kushugulova
- Laboratory of Microbiome, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Samat Kozhakhmetov
- Laboratory of Microbiome, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| |
Collapse
|
2
|
Zholdybayeva E, Kozhakhmetova S, Bayanbek D, Bekbayeva A, Auganova D, Kulmambetova G, Tarlykov P. Multi-omics approach for understanding the response of Bacteroides fragilis to carbapenems. Heliyon 2024; 10:e37049. [PMID: 39286136 PMCID: PMC11402942 DOI: 10.1016/j.heliyon.2024.e37049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
Background The prevalence of Bacteroides fragilis isolates resistant to first-line beta-lactam drugs is increasing, resulting in reduced treatment efficacy. Investigating the bacterial transcriptome and proteome can uncover links between bacterial genes and resistance mechanisms. In this study, we experimentally assessed in vitro the transcriptional and proteomic profiles of B. fragilis exposed to SICs of meropenem, an effective antimicrobial agent, collected from patients with intra-abdominal diseases at Astana City Hospital, Kazakhstan. Methods B. fragilis was cultured in brain heart infusion broth and sub-cultured every 48 h for 8 days in media with and without meropenem. Total RNA was extracted from the liquid cultures using a commercial RNeasy mini kit, and strand-specific RNA sequencing (RNA-seq) was performed on the DNBSEQ platform. Raw RNA-seq data were retrieved from BioProject No. PRJNA531645 and uploaded to the NCBI Sequence Read Archive (accession no. SRX22081155). Proteins of B. fragilis were extracted and separated using sodium dodecyl sulphate-polyacrylamide gel electrophoresis, followed by analysis of the eluted peptides using liquid chromatography-tandem mass spectrometry. Cluster analysis utilised the Database for Annotation, Visualisation, and Integrated Discovery. Results The subinhibitory concentration (SIC) of meropenem was determined to be 0.5 μg/L (minimum inhibitory concentration: 1). Mapping of reads to the reference genome identified 2477 expressed genes in all B. fragilis BFR KZ01 samples. Ten differentially expressed genes (DEGs) were common across comparison groups during and post-antibiotic exposure (wMEM vs. MEM2 and MEM2 vs. rMEM8); however, no substantially enriched Gene Ontology terms were identified. The cluster analysis highlighted a significant enrichment cluster (W-0560 oxidoreductase) of DEGs following antibiotic withdrawal. In total, 859 B. fragilis proteins were identified, with the expressions of three proteins, 3-oxoacyl-[acyl carrier protein] reductase, acetyl-CoA carboxylase biotin carboxylase subunit, and beta-ketoacyl-ACP synthase III, being upregulated in the enriched protein folding category. Notably, chaperone proteins such as FKBP-type peptidyl-prolyl cis-trans isomerases (involved in the cis-trans isomerisation of prolyl peptide bonds) and GroES (a co-chaperone functioning with GroEL) were also identified. Conclusions Under the influence of low doses of antibiotics defense mechanisms are activated which contribute to the emergence of resistance. These results provide insight into the response of B. fragilis to meropenem exposure, mainly at the SIC, contributing to the understanding bacterial survival strategies under stress conditions.
Collapse
Affiliation(s)
| | | | - Dina Bayanbek
- L.N. Gumilyov Eurasian National University, Astana, 010000, Kazakhstan
| | - Ayzhan Bekbayeva
- LPP National Center for Biotechnology, Astana, 010000, Kazakhstan
| | - Dana Auganova
- LPP National Center for Biotechnology, Astana, 010000, Kazakhstan
| | | | - Pavel Tarlykov
- LPP National Center for Biotechnology, Astana, 010000, Kazakhstan
| |
Collapse
|
3
|
Sardzikova S, Andrijkova K, Svec P, Beke G, Klucar L, Minarik G, Bielik V, Kolenova A, Soltys K. Gut diversity and the resistome as biomarkers of febrile neutropenia outcome in paediatric oncology patients undergoing hematopoietic stem cell transplantation. Sci Rep 2024; 14:5504. [PMID: 38448687 PMCID: PMC10918076 DOI: 10.1038/s41598-024-56242-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/04/2024] [Indexed: 03/08/2024] Open
Abstract
The gut microbiota of paediatric oncology patients undergoing a conditioning regimen before hematopoietic stem cell transplantation is recently considered to play role in febrile neutropenia. Disruption of commensal microbiota and evolution of opportune pathogens community carrying a plethora of antibiotic-resistance genes play crucial role. However, the impact, predictive role and association of patient´s gut resistome in the course of the therapy is still to be elucidated. We analysed gut microbiota composition and resistome of 18 paediatric oncology patients undergoing hematopoietic stem cell transplantation, including 12 patients developing febrile neutropenia, hospitalized at The Bone Marrow Transplantation Unit of the National Institute of Children´s disease in Slovak Republic and healthy individuals (n = 14). Gut microbiome of stool samples obtained in 3 time points, before hematopoietic stem cell transplantation (n = 16), one week after hematopoietic stem cell transplantation (n = 16) and four weeks after hematopoietic stem cell transplantation (n = 14) was investigated using shotgun metagenome sequencing and bioinformatical analysis. We identified significant decrease in alpha-diversity and nine antibiotic-resistance genes msr(C), dfrG, erm(T), VanHAX, erm(B), aac(6)-aph(2), aph(3)-III, ant(6)-Ia and aac(6)-Ii, one week after hematopoietic stem cell transplantation associated with febrile neutropenia. Multidrug-resistant opportune pathogens of ESKAPE, Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae and Escherichia coli found in the gut carried the significant subset of patient's resistome. Over 50% of patients treated with trimethoprim/sulfamethoxazole, piperacillin/tazobactam and amikacin carried antibiotic-resistance genes to applied treatment. The alpha diversity and the resistome of gut microbiota one week after hematopoietic stem cell transplantation is relevant predictor of febrile neutropenia outcome after hematopoietic stem cell transplantation. Furthermore, the interindividual diversity of multi-drug resistant opportunistic pathogens with variable portfolios of antibiotic-resistance genes indicates necessity of preventive, personalized approach.
Collapse
Affiliation(s)
- Sara Sardzikova
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Kristina Andrijkova
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Peter Svec
- Department of Paediatric Haematology and Oncology, Children's Haematology and Oncology Clinic and Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Gabor Beke
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lubos Klucar
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | - Viktor Bielik
- Department of Biological and Medical Science, Faculty of Physical Education and Sport, Comenius University in Bratislava, Bratislava, Slovakia
| | - Alexandra Kolenova
- Department of Paediatric Haematology and Oncology, Children's Haematology and Oncology Clinic and Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Katarina Soltys
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia.
| |
Collapse
|
4
|
Amanzholova M, Shaizadinova A, Bulashev A, Abeldenov S. Genetic identification of Staphylococcus aureus isolates from cultured milk samples of bovine mastitis using isothermal amplification with CRISPR/Cas12a-based molecular assay. Vet Res Commun 2024; 48:291-300. [PMID: 37673833 DOI: 10.1007/s11259-023-10212-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023]
Abstract
Bovine mastitis, a common and costly disease in dairy cattle, is primarily caused by Staphylococcus aureus. Timely and accurate detection of this pathogen is crucial for effective disease management. In this study, we developed and validated a novel molecular diagnostic assay based on the CRISPR/Cas12a system coupled with Recombinase Polymerase Amplification (RPA) and Loop-Mediated Isothermal Amplification (LAMP). We utilized specific primers targeting the nucleotide sequences of the S.aureus genes of interest, such as nuc and sea. RPA/LAMP reactions were performed under optimized conditions, and the resulting products were subsequently subjected to CRISPR/Cas12a detection. The CRISPR/Cas12a assay successfully detected the target nuc and sea genes, with a limit of detection of 104 and 102 gene copies per reaction, respectively. All 13 S.aureus clinical isolates were identified by RPA-CRISPR/Cas12a assay. The total reaction time is approximately 1 h. The assay demonstrated high sensitivity for the detection of S.aureus in both laboratory and clinical samples.
Collapse
Affiliation(s)
- Meruyert Amanzholova
- National Center for Biotechnology, Astana, 010000, Kazakhstan
- L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
| | - Aisha Shaizadinova
- National Center for Biotechnology, Astana, 010000, Kazakhstan
- Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Aitbay Bulashev
- S. Seifullin Kazakh Agrotechnical Research University, Astana, Kazakhstan
| | - Sailau Abeldenov
- National Center for Biotechnology, Astana, 010000, Kazakhstan.
- S. Seifullin Kazakh Agrotechnical Research University, Astana, Kazakhstan.
| |
Collapse
|
5
|
Kierzkowska M, Majewska A, Karłowicz K, Pituch H. Phenotypic and genotypic identification of carbapenem resistance in Bacteroides fragilis clinical strains. Med Microbiol Immunol 2023:10.1007/s00430-023-00765-w. [PMID: 37178261 DOI: 10.1007/s00430-023-00765-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
Bacteroides fragilis is an important etiological agent of serious infections in humans. Rapid methods, readily adaptable to use in medical laboratories, are needed to detect antibiotic resistance and decrease the likelihood of therapy failure. The aim of this study was to determine the prevalence of B. fragilis cfiA-positive isolates. The second purpose was to investigate the carbapenemase activity in B. fragilis strains by Carba NP test. In the study, 5.2% of B. fragilis isolates are phenotypically resistant to meropenem. The cfiA gene was identified in 6.1% of B. fragilis isolates. The MICs of meropenem were significantly higher in cfiA-positive strains. The presence of the cfiA gene along with the IS1186 was detected in one B. fragilis strain which was resistant to meropenem (MIC 1.5 mg/L). The Carba NP test results were positive for all the cfiA-positive strains, including those susceptible to carbapenems based on their MIC values. A review of the literature revealed that the rate of B. fragilis with the cfiA gene varies from 7.6 to 38.9% worldwide. Presented results are in line with the other European studies. Phenotypic testing with the Carba NP test, it seems to be a viable alternative for the cfiA gene detection in B. fragilis isolates. The positive result obtained is of greater clinical importance than the detection of the gene cfiA.
Collapse
Affiliation(s)
- Marta Kierzkowska
- Department of Medical Microbiology, Medical University of Warsaw, Warsaw, Poland
| | - Anna Majewska
- Department of Medical Microbiology, Medical University of Warsaw, Warsaw, Poland.
| | - Konrad Karłowicz
- Department of Medical Microbiology, Medical University of Warsaw, Warsaw, Poland
| | - Hanna Pituch
- Department of Medical Microbiology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
6
|
Romadanova NV, Tolegen AB, Kushnarenko SV, Zholdybayeva EV, Bettoni JC. Effect of Plant Preservative Mixture TM on Endophytic Bacteria Eradication from In Vitro-Grown Apple Shoots. PLANTS (BASEL, SWITZERLAND) 2022; 11:2624. [PMID: 36235489 PMCID: PMC9572907 DOI: 10.3390/plants11192624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Endophytic contaminants are a common problem for the in vitro propagation of woody plants and have significant economic repercussions for the conservation of plant genetic resources and commercial micropropagation. In this study, first, the microbial contamination that appeared around the base of in vitro-grown apple shoots was identified as Bacillus megaterium. Then, plant preservative mixture (PPMTM) was used as a bactericidal agent in plant tissue culture. Its efficacy for eradicating endophytic B. megaterium in in vitro cultures of apple was tested. In vitro-contaminated shoots were grown in tissue culture medium supplemented with 0.2% v/v PPMTM for 12 weeks and then transferred to medium without any PPMTM and cultured for 24 weeks. This study showed that PPMTM is an effective agent for controlling the growth of B. megaterium. Our results highlight the species-specific response of apple shoots to PPMTM. PPMTM was effective in controlling endogenous microbial contaminations from apple varieties 'Golden Delicious', 'Landsberger Renette', 'Suislepper', and 'Aport krovavo-krasnyi'; meanwhile, in 'KG 7' and 'Gold Rush', all the plants grown in the absence of PPMTM were still bacterially contaminated, even though they were pre-treated for 12 weeks in PPMTM-supplemented medium. These results therefore suggest the essentiality of further testing of extended incubation of PPMTM in these cultivars that had outbreaks of bacterial contamination.
Collapse
Affiliation(s)
- Natalya V. Romadanova
- Institute of Plant Biology and Biotechnology, 45 Timiryazev St., Almaty 050040, Kazakhstan
- Department of Molecular Biology and Genetics, Al-Farabi Kazakh National University, Al-Farabi Av. 71, Almaty 050040, Kazakhstan
| | - Arman B. Tolegen
- Institute of Plant Biology and Biotechnology, 45 Timiryazev St., Almaty 050040, Kazakhstan
- Department of Molecular Biology and Genetics, Al-Farabi Kazakh National University, Al-Farabi Av. 71, Almaty 050040, Kazakhstan
| | | | - Elena V. Zholdybayeva
- National Center for Biotechnology, 13/5 Kurgalzhynskoye Road, Nur-Sultan 010000, Kazakhstan
| | - Jean Carlos Bettoni
- The New Zealand Institute for Plant and Food Research Limited, Batchelar Road, Palmerston North 4410, New Zealand
| |
Collapse
|
7
|
Diversity of genomic clusters and CfiA/cfiA alleles in Bacteroides fragilis isolates from human and animals. Anaerobe 2022; 75:102567. [DOI: 10.1016/j.anaerobe.2022.102567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/28/2022] [Accepted: 04/09/2022] [Indexed: 11/23/2022]
|