1
|
Radford-Smith DE, Anthony DC. Vancomycin-Resistant E. faecium: Addressing Global and Clinical Challenges. Antibiotics (Basel) 2025; 14:522. [PMID: 40426588 PMCID: PMC12108356 DOI: 10.3390/antibiotics14050522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2025] [Revised: 05/16/2025] [Accepted: 05/17/2025] [Indexed: 05/29/2025] Open
Abstract
Antimicrobial resistance (AMR) poses a profound threat to modern healthcare, with vancomycin-resistant Enterococcus faecium (VREfm) emerging as a particularly resilient and clinically significant pathogen. This mini-review examines the biological mechanisms underpinning VREfm resistance, including biofilm formation, stress tolerance, and the acquisition of resistance genes such as vanA and vanB. It also explores the behavioural, social, and healthcare system factors that facilitate VREfm transmission, highlighting disparities in burden across vulnerable populations and low-resource settings. Prevention strategies are mapped across the disease pathway, spanning primary, secondary, and tertiary levels, with a particular focus on the role and evolving challenges of antimicrobial stewardship programmes (ASP). We highlight emerging threats, such as rifaximin-induced cross-resistance to daptomycin, which challenge conventional stewardship paradigms. Finally, we propose future directions to enhance global surveillance, promote equitable stewardship interventions, and accelerate the development of innovative therapies. Addressing VREfm requires a coordinated, multidisciplinary effort to safeguard the efficacy of existing antimicrobials and protect at-risk patient populations.
Collapse
|
2
|
Berteina-Raboin S. Comprehensive Overview of Antibacterial Drugs and Natural Antibacterial Compounds Found in Food Plants. Antibiotics (Basel) 2025; 14:185. [PMID: 40001427 PMCID: PMC11851795 DOI: 10.3390/antibiotics14020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/04/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
The aim of this review is to list the various natural sources of antimicrobials that are readily available. Indeed, many plant sources are known to have antibiotic properties, although it is not always clear which molecule is responsible for this activity. Many food supplements also have this therapeutic indication. We propose here to take stock of the scientific knowledge attesting or not to these indications for some food sources. An overview of the various antibiotic drugs commercially available will be provided. A structural indication of the natural molecules present in various plants and reported to contribute to their antibiotic power will be given. The plants mentioned in this review, which does not claim to be exhaustive, are referenced for fighting Gram-positive and/or Gram-negative bacteria. It is difficult to attribute activity to just one of these natural molecules, as it is likely to result from synergy within the plant. Similarly, chitosan is mentioned for its fungistatic and bacteriostatic properties. In this case, this polymeric compound derived from the chitin of marine organisms is referenced for its antibiofilm activity. It seems that, in the face of growing antibiotic resistance, it makes sense to keep high-performance synthetic antibiotics on hand to treat the difficult pathologies that require them. On the other hand, for minor infections, the use of better-tolerated natural sources is certainly sufficient. To achieve this, we need to take stock of common plant sources, available as food products or dietary supplements, which are known to be active in this field.
Collapse
Affiliation(s)
- Sabine Berteina-Raboin
- Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans, UMR-CNRS 7311, BP 6759, Rue de Chartres, CEDEX 2, 45067 Orleans, France
| |
Collapse
|
3
|
Burke Ó, Zeden MS, O’Gara JP. The pathogenicity and virulence of the opportunistic pathogen Staphylococcus epidermidis. Virulence 2024; 15:2359483. [PMID: 38868991 PMCID: PMC11178275 DOI: 10.1080/21505594.2024.2359483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/19/2024] [Indexed: 06/14/2024] Open
Abstract
The pervasive presence of Staphylococcus epidermidis and other coagulase-negative staphylococci on the skin and mucous membranes has long underpinned a casual disregard for the infection risk that these organisms pose to vulnerable patients in healthcare settings. Prior to the recognition of biofilm as an important virulence determinant in S. epidermidis, isolation of this microorganism in diagnostic specimens was often overlooked as clinically insignificant with potential delays in diagnosis and onset of appropriate treatment, contributing to the establishment of chronic infection and increased morbidity or mortality. While impressive progress has been made in our understanding of biofilm mechanisms in this important opportunistic pathogen, research into other virulence determinants has lagged S. aureus. In this review, the broader virulence potential of S. epidermidis including biofilm, toxins, proteases, immune evasion strategies and antibiotic resistance mechanisms is surveyed, together with current and future approaches for improved therapeutic interventions.
Collapse
Affiliation(s)
- Órla Burke
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | | | - James P. O’Gara
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| |
Collapse
|
4
|
Arrigoni R, Ballini A, Jirillo E, Santacroce L. Current View on Major Natural Compounds Endowed with Antibacterial and Antiviral Effects. Antibiotics (Basel) 2024; 13:603. [PMID: 39061285 PMCID: PMC11274329 DOI: 10.3390/antibiotics13070603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Nowadays, infectious diseases of bacterial and viral origins represent a serious medical problem worldwide. In fact, the development of antibiotic resistance is responsible for the emergence of bacterial strains that are refractory even to new classes of antibiotics. Furthermore, the recent COVID-19 pandemic suggests that new viruses can emerge and spread all over the world. The increase in infectious diseases depends on multiple factors, including malnutrition, massive migration of population from developing to industrialized areas, and alteration of the human microbiota. Alternative treatments to conventional antibiotics and antiviral drugs have intensively been explored. In this regard, plants and marine organisms represent an immense source of products, such as polyphenols, alkaloids, lanthipeptides, and terpenoids, which possess antibacterial and antiviral activities. Their main mechanisms of action involve modifications of bacterial cell membranes, with the formation of pores, the release of cellular content, and the inhibition of bacterial adherence to host cells, as well as of the efflux pump. Natural antivirals can interfere with viral replication and spreading, protecting the host with the enhanced production of interferon. Of note, these antivirals are not free of side effects, and their administration to humans needs more research in terms of safety. Preclinical research with natural antibacterial and antiviral compounds confirms their effects against bacteria and viruses, but there are still only a few clinical trials. Therefore, their full exploitation and more intensive clinical studies represent the next steps to be pursued in this area of medicine.
Collapse
Affiliation(s)
- Roberto Arrigoni
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), 70124 Bari, Italy
| | - Andrea Ballini
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Emilio Jirillo
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Luigi Santacroce
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| |
Collapse
|
5
|
Bouhrour N, Nibbering PH, Bendali F. Medical Device-Associated Biofilm Infections and Multidrug-Resistant Pathogens. Pathogens 2024; 13:393. [PMID: 38787246 PMCID: PMC11124157 DOI: 10.3390/pathogens13050393] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/29/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024] Open
Abstract
Medical devices such as venous catheters (VCs) and urinary catheters (UCs) are widely used in the hospital setting. However, the implantation of these devices is often accompanied by complications. About 60 to 70% of nosocomial infections (NIs) are linked to biofilms. The main complication is the ability of microorganisms to adhere to surfaces and form biofilms which protect them and help them to persist in the host. Indeed, by crossing the skin barrier, the insertion of VC inevitably allows skin flora or accidental environmental contaminants to access the underlying tissues and cause fatal complications like bloodstream infections (BSIs). In fact, 80,000 central venous catheters-BSIs (CVC-BSIs)-mainly occur in intensive care units (ICUs) with a death rate of 12 to 25%. Similarly, catheter-associated urinary tract infections (CA-UTIs) are the most commonlyhospital-acquired infections (HAIs) worldwide.These infections represent up to 40% of NIs.In this review, we present a summary of biofilm formation steps. We provide an overview of two main and important infections in clinical settings linked to medical devices, namely the catheter-asociated bloodstream infections (CA-BSIs) and catheter-associated urinary tract infections (CA-UTIs), and highlight also the most multidrug resistant bacteria implicated in these infections. Furthermore, we draw attention toseveral useful prevention strategies, and advanced antimicrobial and antifouling approaches developed to reduce bacterial colonization on catheter surfaces and the incidence of the catheter-related infections.
Collapse
Affiliation(s)
- Nesrine Bouhrour
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria;
| | - Peter H. Nibbering
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Farida Bendali
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria;
| |
Collapse
|
6
|
Eckmann C, Sunderkötter C, Becker K, Grabein B, Hagel S, Hanses F, Wichmann D, Thalhammer F. Left ventricular assist device-associated driveline infections as a specific form of complicated skin and soft tissue infection/acute bacterial skin and skin structure infection - issues and therapeutic options. Curr Opin Infect Dis 2024; 37:95-104. [PMID: 38085707 PMCID: PMC10911258 DOI: 10.1097/qco.0000000000000999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
PURPOSE OF REVIEW This review comments on the current guidelines for the treatment of wound infections under definition of acute bacterial skin and skin structure infections (ABSSSI). However, wound infections around a catheter, such as driveline infections of a left ventricular assist device (LVAD) are not specifically listed under this definition in any of the existing guidelines. RECENT FINDINGS Definitions and classification of LVAD infections may vary across countries, and the existing guidelines and recommendations may not be equally interpreted among physicians, making it unclear if these infections can be considered as ABSSSI. Consequently, the use of certain antibiotics that are approved for ABSSSI may be considered as 'off-label' for LVAD infections, leading to rejection of reimbursement applications in some countries, affecting treatment strategies, and hence, patients' outcomes. However, we believe driveline exit site infections related to LVAD can be included within the ABSSSI definition. SUMMARY We argue that driveline infections meet the criteria for ABSSSI which would enlarge the 'on-label' antibiotic armamentarium for treating these severe infections, thereby improving the patients' quality of life.
Collapse
Affiliation(s)
- Christian Eckmann
- Academic Hospital of Goettingen University, Department of General, Visceral and Thoracic Surgery, Klinikum Hannoversch-Muenden, Hannoversch-Muenden
| | - Cord Sunderkötter
- Martin-Luther-University Halle-Wittenberg, University and University Hospital of Halle, Department of Dermatology and Venerology, Halle
| | - Karsten Becker
- University Medicine Greifswald, Friedrich Loeffler-Institute of Medical Microbiology, Greifswald
| | - Béatrice Grabein
- LMU Hospital, Clinical Microbiology and Hospital Hygiene, Munich
| | - Stefan Hagel
- Jena University Hospital-Friedrich Schiller University Jena, Institute for Infectious Diseases and Infection Control, Jena
| | - Frank Hanses
- University Hospital Regensburg, Department of Infection Prevention and Infectious Diseases
- University Hospital Regensburg, Emergency Department, Regensburg
| | - Dominic Wichmann
- University Medical Center Hamburg-Eppendorf, Department of Intensive Care Medicine, Hamburg
| | | |
Collapse
|
7
|
Pacyga K, Pacyga P, Topola E, Viscardi S, Duda-Madej A. Bioactive Compounds from Plant Origin as Natural Antimicrobial Agents for the Treatment of Wound Infections. Int J Mol Sci 2024; 25:2100. [PMID: 38396777 PMCID: PMC10889580 DOI: 10.3390/ijms25042100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
The rising prevalence of drug-resistant bacteria underscores the need to search for innovative and nature-based solutions. One of the approaches may be the use of plants that constitute a rich source of miscellaneous compounds with a wide range of biological properties. This review explores the antimicrobial activity of seven bioactives and their possible molecular mechanisms of action. Special attention was focused on the antibacterial properties of berberine, catechin, chelerythrine, cinnamaldehyde, ellagic acid, proanthocyanidin, and sanguinarine against Staphylococcus aureus, Enterococcus spp., Klebsiella pneumoniae, Acinetobacter baumannii, Escherichia coli, Serratia marcescens and Pseudomonas aeruginosa. The growing interest in novel therapeutic strategies based on new plant-derived formulations was confirmed by the growing number of articles. Natural products are one of the most promising and intensively examined agents to combat the consequences of the overuse and misuse of classical antibiotics.
Collapse
Affiliation(s)
- Katarzyna Pacyga
- Department of Environment Hygiene and Animal Welfare, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| | - Paweł Pacyga
- Department of Thermodynamics and Renewable Energy Sources, Faculty of Mechanical and Power Engineering, Wrocław University of Science and Technology, 50-370 Wrocław, Poland;
| | - Ewa Topola
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (E.T.); (S.V.)
| | - Szymon Viscardi
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (E.T.); (S.V.)
| | - Anna Duda-Madej
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Chałubińskiego 4, 50-368 Wrocław, Poland
| |
Collapse
|
8
|
Courjon J, Senneville E, Illes HG, Pavese P, Boutoille D, Daoud FC, Dunkel N, Tattevin P. Effectiveness and safety of dalbavancin in France: a prospective, multicentre cohort study. Int J Antimicrob Agents 2023; 62:106945. [PMID: 37543122 DOI: 10.1016/j.ijantimicag.2023.106945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 07/04/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
OBJECTIVES Dalbavancin is a lipoglycopeptide antibiotic approved for the treatment of acute bacterial skin and skin structure infections. However, several studies have suggested that it is used mostly for off-label indications. We aimed to describe the use of dalbavancin in patients who received at least one dose of the antibiotic in France. METHODS Prospective, observational, multicentre study conducted in France from September 2018 to April 2020. The primary outcome was the clinical response at 30 days after the last dalbavancin dose. RESULTS A total of 151 patients in 16 centres were included in this study. The main infection sites were bone and joint infections (55.0%), multisite infections (15.9%), and vascular infections (14.6%), and the primary pathogens were coagulase-negative staphylococci (N = 82), Staphylococcus aureus (N = 51), and enterococci (N = 27). Most patients (71.5%) received three previous antibiotic treatments. The number of dalbavancin injections per patient was 1 in 26 patients (17.2%), 2 in 95 patients (62.9%), 3 in 17 patients (11.3%), and more than 3 in 13 patients (8.6%), with a mean cumulative dose of 3089 ± 1461 mg per patient. Among the 129 patients with a complete follow-up, clinical success was achieved in 119 patients (92.2%). At least 1 adverse event was reported in 67 patients (44.4%), including 12 (7.9%) patients with dalbavancin-related adverse events. CONCLUSIONS The results of the study showed that dalbavancin is used mostly for off-label indications and in heavily pretreated patients in France. The clinical response at 30 days after the last dose was favourable in most patients, with a good safety profile.
Collapse
Affiliation(s)
- Johan Courjon
- Université Côte d'Azur, CHU Nice, Nice, France, Infectious Disease Unit, Nice, France.
| | - Eric Senneville
- Infectious Diseases Department, Gustave Dron Hospital, Tourcoing, France
| | | | - Patricia Pavese
- Infectious Diseases Department, Grenoble Alpes University Hospital, La Tronche, France
| | - David Boutoille
- Department of Infectious Disease and CIC-UIC 1413 INSERM, Nantes University Hospital, Nantes, France
| | | | | | - Pierre Tattevin
- Infectious Diseases and Intensive Care Unit, Pontchaillou University Hospital, Rennes, France
| |
Collapse
|
9
|
Kim S, Choi JP, Oh DH, Ahn MY, Yang E. Increased incidence of teicoplanin-non-susceptible Staphylococcus epidermidis strains: a 6-year retrospective study. Sci Rep 2023; 13:12582. [PMID: 37537250 PMCID: PMC10400644 DOI: 10.1038/s41598-023-39666-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023] Open
Abstract
Glycopeptide antibiotics (vancomycin and teicoplanin) are usually used for the treatment of Staphylococcus epidermidis infections owing to their increased oxacillin resistance. However, S. epidermidis strains with decreased susceptibility to teicoplanin have become increasingly incident in recent years. We aimed to identify the characteristics of teicoplanin-non-susceptible (Teico-NS) S. epidermidis isolated at our hospital and analyze its relationship with teicoplanin usage. We retrospectively evaluated 328 S. epidermidis strains isolated from clinical isolates between January 2016 and December 2021. All strains were susceptible to vancomycin (minimal inhibitory concentration (MIC) ≤ 4 mg/L). The annual incidence for S. epidermidis strains with an elevated teicoplanin MIC of 8 mg/L ranged from 22.2 to 28.9%. In addition, in 2021, the number of S. epidermidis strains with teicoplanin MIC ≥ 16 mg/L rapidly increased (n = 13, 32.5%). Furthermore, teicoplanin use increased annually until 2019; however, in 2020, it decreased abruptly due to the COVID 19 pandemic. Thus, we could not confirm the existence of a clear correlation between teicoplanin usage and increased incidence of S. epidermidis with reduced teicoplanin-susceptibility. We showed the increased incidence of Teico-NS S. epidermidis in recent years. Further studies are needed to identify the mechanisms and risk factors for teicoplanin-resistance in S. epidermidis.
Collapse
Affiliation(s)
- Subin Kim
- Division of Infectious Disease, Seoul Medical Center, 156, Sinnae-ro, Jungnang-gu, Seoul, 05505, Republic of Korea
| | - Jae-Phil Choi
- Division of Infectious Disease, Seoul Medical Center, 156, Sinnae-ro, Jungnang-gu, Seoul, 05505, Republic of Korea
| | - Dong Hyun Oh
- Division of Infectious Disease, Seoul Medical Center, 156, Sinnae-ro, Jungnang-gu, Seoul, 05505, Republic of Korea
| | - Mi Young Ahn
- Division of Infectious Disease, Seoul Medical Center, 156, Sinnae-ro, Jungnang-gu, Seoul, 05505, Republic of Korea
| | - Eunmi Yang
- Division of Infectious Disease, Seoul Medical Center, 156, Sinnae-ro, Jungnang-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
10
|
Hanses F, Dolff S, Trauth J, Seimetz M, Hagel S. A Multicentre, Prospective, and Retrospective Registry to Characterize the Use, Effectiveness, and Safety of Dalbavancin in German Clinical Practice. Antibiotics (Basel) 2022; 11:antibiotics11050563. [PMID: 35625206 PMCID: PMC9138055 DOI: 10.3390/antibiotics11050563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/18/2022] Open
Abstract
The antibiotic dalbavancin is approved for intravenous treatment of adults with acute bacterial skin and skin structure infections. This study aimed to observe the use, effectiveness, and safety of dalbavancin in clinical practice in Germany. It was a multicentre, prospective, and retrospective registry and consecutively enrolled patients treated with dalbavancin. Each patient was observed from the first to the last dose of dalbavancin, with a 30-day follow-up. Patient inclusion was planned for 2 years, but was terminated early due to low recruitment. All analyses were descriptive. Between November 2018 and December 2019, nine patients were enrolled. Only three patients were treated for the approved indication. Outcome was assessed by the physicians as ‘success’ in five (55.6%) patients, ‘failure’ in one (11.1%) patient, and non-evaluable in three (33.3%) patients. Although the success rate of dalbavancin was lower than reported previously, this may be due to the severity of underlying infections and patients’ high Charlson Comorbidity Index. None of the two reported adverse events were considered related to dalbavancin. These findings were in line with real-world data for dalbavancin from other countries, supporting the drug’s positive benefit–risk profile and suggesting frequent off-label use in German routine practice.
Collapse
Affiliation(s)
- Frank Hanses
- Emergency Department, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany;
- Department for Infectious Diseases and Infection Control, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Sebastian Dolff
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany;
| | - Janina Trauth
- Division of Infectious Diseases, Department of Internal Medicine II, University Hospital Giessen and Marburg, Klinikstraße 33, 35392 Giessen, Germany;
| | - Michael Seimetz
- Advanz Pharma Germany GmbH, Herforder Str. 69, 33602 Bielefeld, Germany;
| | - Stefan Hagel
- Institute for Infectious Diseases and Infection Control, Jena University Hospital—Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany
- Correspondence: ; Tel.: +49-3641-9-324590
| |
Collapse
|
11
|
Gurnani M, Chauhan A, Ranjan A, Tuli HS, Alkhanani MF, Haque S, Dhama K, Lal R, Jindal T. Filamentous Thermosensitive Mutant Z: An Appealing Target for Emerging Pathogens and a Trek on Its Natural Inhibitors. BIOLOGY 2022; 11:624. [PMID: 35625352 PMCID: PMC9138142 DOI: 10.3390/biology11050624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/18/2022] [Accepted: 04/01/2022] [Indexed: 12/14/2022]
Abstract
Antibiotic resistance is a major emerging issue in the health care sector, as highlighted by the WHO. Filamentous Thermosensitive mutant Z (Fts-Z) is gaining significant attention in the scientific community as a potential anti-bacterial target for fighting antibiotic resistance among several pathogenic bacteria. The Fts-Z plays a key role in bacterial cell division by allowing Z ring formation. Several in vitro and in silico experiments have demonstrated that inhibition of Fts-Z can lead to filamentous growth of the cells, and finally, cell death occurs. Many natural compounds that have successfully inhibited Fts-Z are also studied. This review article intended to highlight the structural-functional aspect of Fts-Z that leads to Z-ring formation and its contribution to the biochemistry and physiology of cells. The current trend of natural inhibitors of Fts-Z protein is also covered.
Collapse
Affiliation(s)
- Manisha Gurnani
- Amity Institute of Environmental Science, Amity University, Noida 201301, India;
| | - Abhishek Chauhan
- Amity Institute of Environmental Toxicology, Safety and Management, Amity University, Noida 201303, India;
| | - Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Ambala 133207, India;
| | - Mustfa F. Alkhanani
- Emergency Service Department, College of Applied Sciences, AlMaarefa University, Riyadh 11597, Saudi Arabia;
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia;
- Faculty of Medicine, Görükle Campus, Bursa Uludağ University, Nilüfer, Bursa 16059, Turkey
| | - Kuldeep Dhama
- Division of Pathology, ICAR—Indian Veterinary Research Institute, Bareilly 243122, India;
| | - Rup Lal
- Department of Zoology, University of Delhi, Delhi 110021, India;
| | - Tanu Jindal
- Amity Institute of Environmental Toxicology, Safety and Management, Amity University, Noida 201303, India;
| |
Collapse
|