1
|
Zheng L, Di Q, Xu X, Liu L, Qu C, Bremer P, Zhou X. Phenotypic and WGS-derived antibiotic resistance patterns of Salmonella Enteritidis isolates from retail meat and environment during 2014 to 2019 in China. Front Microbiol 2025; 16:1502138. [PMID: 39931381 PMCID: PMC11808041 DOI: 10.3389/fmicb.2025.1502138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/07/2025] [Indexed: 02/13/2025] Open
Abstract
The emergence of multidrug-resistant (MDR) Salmonella Enteritidis has highlighted the importance of regularly monitoring for the occurrence of antibiotic-resistant strains. The current study combined phenotyping analysis and whole-genome-sequencing (WGS) to investigate the associations between the antibiotic-resistant phenotypes (ARPs) and genetic characteristics determinants in 95 Salmonella Enteritidis isolates from retail meat and environmental samples in China (2014-2019). Phenotypic analyses revealed that 70 isolates (73.68%) were MDR with 12 distinct resistance patterns. Most MDR strains (81.43%) had NAL-AMP-FIS-STR ± TET profiles, showing a fluctuating trend from 2015 to 2019, likely influenced by tetracycline withdrawal management. WGS identified four types of mutations in the gyrA gene were associated with nalidixic acid resistance. The co-carrying of bla TEM, sul2 and aph(6)-Id/aph(3″)-Ib was likely mediated by an X1-type plasmid, corresponding to resistance against ampicillin, sulfisoxazole, and streptomycin. Combining phenotypic analyses and WGS data, the 31 sequenced strains were primarily divided into two clusters, with most epidemic resistant strains in the largest cluster A. Identical ARP patterns observed across different sample types, regions, and isolation years but clustering together in cluster A suggested potential cross-contamination within the retail chain. Cluster B exhibited more diverse resistance patterns and genetic characteristics. Notably, three isolates in cluster B require special mention: a monophasic strain resistant to eight antibiotics, a strain exhibiting highly heteroresistance, and a strain with additional exotoxin genes. These results highlight the importance of ongoing surveillance and the utility of WGS to track and understand antibiotic resistance in Salmonella Enteritidis.
Collapse
Affiliation(s)
- Liya Zheng
- College of Public Health, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Qiannan Di
- College of Public Health, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xuebin Xu
- Shanghai Center for Disease Control and Prevention, Shanghai, China
| | - Liyuan Liu
- College of Public Health, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Chunbo Qu
- College of Public Health, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Phil Bremer
- Department of Food Science, University of Otago, Dunedin, New Zealand
- New Zealand Food Safety Science and Research Centre, Palmerston North, New Zealand
| | - Xiujuan Zhou
- College of Public Health, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
2
|
Evans N, Cloward J, Ward RE, van Wietmarschen HA, van Eekeren N, Kronberg SL, Provenza FD, van Vliet S. Pasture-finishing of cattle in Western U.S. rangelands improves markers of animal metabolic health and nutritional compounds in beef. Sci Rep 2024; 14:20240. [PMID: 39215122 PMCID: PMC11364752 DOI: 10.1038/s41598-024-71073-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
As environmental and health concerns of beef production and consumption mount, there is growing interest in agroecological production methods, including finishing beef cattle on pastures with phytochemically diverse grasses, forbs, and/or shrubs. The goal of this metabolomics, lipidomics, and fatty acid methyl ester profiling study was to compare meat (pectoralis profundus) of Black Angus cattle from two commercial US beef finishing systems (pasture-finished on Western U.S. rangeland; n = 18 and grain-finished in a Midwest U.S. feedlot; n = 18). A total of 907 out of 1575 compounds differed in abundance between pasture-finished and grain-finished beef samples (all, false discovery rate adjusted P < 0.05). Pasture-finished beef contained higher levels of phenolic antioxidants (2.6-fold), alpha-tocopherol (3.1-fold), nicotinate/vitamin B3 (9.4-fold), choline (1.2-fold), myo-inositol (1.8-fold), and omega-3 fatty acids (4.1-fold). Grain-finished beef contained higher levels of gamma-tocopherol (14.6-fold), nicotinamide/vitamin B3 (1.5-fold), pantothenate/vitamin B5 (1.3-fold), and pyridoxine/vitamin B6 (1.3-fold); indicating that feeding some grain (by-products) could be beneficial to increase levels of certain B-vitamins. Pasture-finished beef samples also displayed lower levels of oxidative stress (homocysteine, 0.6-fold; and 4-hydroxy-nonenal-glutathione, 0.4-fold) and improved mitochondrial function (1.3-fold) compared to grain-finished animals. Two potential metabolites of fluoroquinolone antibiotics, 2,8-quinolinediol and 2,8-quinolinediol sulfate, were only observed in grain-finished beef, though the source remains unknown. While pasture-finished cattle displayed improved markers of metabolic health and concentrated additional, potentially health-promoting compounds in their meat, our findings should not be interpreted as that grain-finished beef is unhealthy to consume. Randomized controlled trials in humans are required to further assess whether observed differences between pasture-finished and feedlot-finished beef have an appreciable effect on human health.
Collapse
Affiliation(s)
- Nikia Evans
- School of Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Jennifer Cloward
- Department of Nutrition, Dietetics, and Food Sciences, Center for Human Nutrition Studies, Utah State University, Logan, UT, 84322, USA
| | - Robert E Ward
- Department of Nutrition, Dietetics, and Food Sciences, Center for Human Nutrition Studies, Utah State University, Logan, UT, 84322, USA
| | | | | | - Scott L Kronberg
- Northern Great Plains Research Laboratory, USDA-Agricultural Research Service, Mandan, ND, 58554, USA
| | | | - Stephan van Vliet
- Department of Nutrition, Dietetics, and Food Sciences, Center for Human Nutrition Studies, Utah State University, Logan, UT, 84322, USA.
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, 27701, USA.
| |
Collapse
|
3
|
Ribeiro LF, Rossi GAM, Sato RA, de Souza Pollo A, Cardozo MV, do Amaral LA, Fairbrother JM. Epidemiology, Virulence and Antimicrobial Resistance of Escherichia coli Isolated from Small Brazilian Farms Producers of Raw Milk Fresh Cheese. Microorganisms 2024; 12:1739. [PMID: 39203581 PMCID: PMC11357254 DOI: 10.3390/microorganisms12081739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/03/2024] Open
Abstract
This study aimed to identify contamination sources in raw milk and cheese on small farms in Brazil by isolating Escherichia coli at various stages of milk production and cheese manufacturing. The study targeted EAEC, EIEC, ETEC, EPEC, STEC, and ExPEC pathotypes, characterizing isolates for the presence of virulence genes, phylogroups, antimicrobial susceptibility, and phylogenetic relationships using PFGE and MLST. The presence of antimicrobial resistance genes and serogroups was also determined. Three categories of E. coli were identified: pathogenic, commensal, and ceftriaxone-resistant (ESBL) strains. Pathogenic EPEC, STEC, and ExPEC isolates were detected in milk and cheese samples. Most isolates belonged to phylogroups A and B1 and were resistant to antimicrobials such as nalidixic acid, ampicillin, kanamycin, streptomycin, sulfisoxazole, and tetracycline. Genetic analysis revealed that E. coli with identical virulence genes were present at different stages within the same farm. The most frequently identified serogroup was O18, and MLST identified ST131 associated with pathogenic isolates. The study concluded that E. coli was present at multiple points in milk collection and cheese production, with significant phylogroups and high antimicrobial resistance. These findings highlight the public health risk posed by contamination in raw milk and fresh cheese, emphasizing the need to adopt hygienic practices to control these microorganisms.
Collapse
Affiliation(s)
- Laryssa Freitas Ribeiro
- Mário Palmério University Center (UniFucamp), Av. Brasil Oeste, 1900, Jardim Zenith, Monte Carmelo 38500-000, MG, Brazil;
| | | | - Rafael Akira Sato
- State University of São Paulo (UNESP), Via de Acesso Professor Paulo Donato Castelane Castellane S/N—Vila Industrial, Jaboticabal 14884-900, SP, Brazil; (R.A.S.); (A.d.S.P.); (M.V.C.)
| | - Andressa de Souza Pollo
- State University of São Paulo (UNESP), Via de Acesso Professor Paulo Donato Castelane Castellane S/N—Vila Industrial, Jaboticabal 14884-900, SP, Brazil; (R.A.S.); (A.d.S.P.); (M.V.C.)
| | - Marita Vedovelli Cardozo
- State University of São Paulo (UNESP), Via de Acesso Professor Paulo Donato Castelane Castellane S/N—Vila Industrial, Jaboticabal 14884-900, SP, Brazil; (R.A.S.); (A.d.S.P.); (M.V.C.)
| | - Luiz Augusto do Amaral
- State University of São Paulo (UNESP), Via de Acesso Professor Paulo Donato Castelane Castellane S/N—Vila Industrial, Jaboticabal 14884-900, SP, Brazil; (R.A.S.); (A.d.S.P.); (M.V.C.)
| | - John Morris Fairbrother
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, 3200 rue Sicotte, Saint-Hyacinthe, QC J2S 2M2, Canada
| |
Collapse
|
4
|
Iduu NV, Raiford D, Conley A, Scaria J, Nelson J, Ruesch L, Price S, Yue M, Gong J, Wei L, Wang C. A Retrospective Analysis of Salmonella Isolates across 11 Animal Species (1982-1999) Led to the First Identification of Chromosomally Encoded blaSCO-1 in the USA. Microorganisms 2024; 12:528. [PMID: 38543579 PMCID: PMC10974302 DOI: 10.3390/microorganisms12030528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 04/01/2024] Open
Abstract
Antimicrobial resistance (AMR) in non-typhoidal Salmonella is a pressing public health concern in the United States, necessitating continuous surveillance. We conducted a retrospective analysis of 251 Salmonella isolates from 11 animal species recovered between 1982 and 1999, utilizing serotyping, antimicrobial susceptibility testing, and whole-genome sequencing (WGS). Phenotypic resistance was observed in 101 isolates, with S. Typhimurium, S. Dublin, S. Agona, and S. Muenster prevailing among 36 identified serovars. Notably, resistance to 12 of 17 antibiotics was detected, with ampicillin being most prevalent (79/251). We identified 38 resistance genes, primarily mediating aminoglycoside (n = 13) and β-lactamase (n = 6) resistance. Plasmid analysis unveiled nine distinct plasmids associated with AMR genes in these isolates. Chromosomally encoded blaSCO-1 was present in three S. Typhimurium and two S. Muenster isolates from equine samples, conferring resistance to amoxicillin/clavulanic acid. Phylogenetic analysis revealed three distinct clusters for these five isolates, indicating evolutionary divergence. This study represents the first report of blaSCO-1 in the USA, and our recovered isolates harboring this gene as early as 1989 precede those of all other reports. The enigmatic nature of blaSCO-1 prompts further research into its function. Our findings highlight the urgency of addressing antimicrobial resistance in Salmonella for effective public health interventions.
Collapse
Affiliation(s)
- Nneka Vivian Iduu
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (N.V.I.); (D.R.); (S.P.)
| | - Donna Raiford
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (N.V.I.); (D.R.); (S.P.)
| | - Austin Conley
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (N.V.I.); (D.R.); (S.P.)
| | - Joy Scaria
- Department of Veterinary Pathobiology, Stillwater, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Julie Nelson
- Department of Veterinary & Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA; (J.N.); (L.R.)
| | - Laura Ruesch
- Department of Veterinary & Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA; (J.N.); (L.R.)
| | - Stuart Price
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (N.V.I.); (D.R.); (S.P.)
| | - Min Yue
- Department of Veterinary Medicine, Zhejiang University, Hangzhou 310027, China
| | - Jiansen Gong
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, China;
| | - Lanjing Wei
- Bioengineering Program, The University of Kansas, Lawrence, KS 66045, USA;
| | - Chengming Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (N.V.I.); (D.R.); (S.P.)
| |
Collapse
|
5
|
Mora JFB, Meclat VYB, Calayag AMB, Campino S, Hafalla JCR, Hibberd ML, Phelan JE, Clark TG, Rivera WL. Genomic analysis of Salmonella enterica from Metropolitan Manila abattoirs and markets reveals insights into circulating virulence and antimicrobial resistance genotypes. Front Microbiol 2024; 14:1304283. [PMID: 38312499 PMCID: PMC10835624 DOI: 10.3389/fmicb.2023.1304283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/26/2023] [Indexed: 02/06/2024] Open
Abstract
The integration of next-generation sequencing into the identification and characterization of resistant and virulent strains as well as the routine surveillance of foodborne pathogens such as Salmonella enterica have not yet been accomplished in the Philippines. This study investigated the antimicrobial profiles, virulence, and susceptibility of the 105 S. enterica isolates from swine and chicken samples obtained from slaughterhouses and public wet markets in Metropolitan Manila using whole-genome sequence analysis. Four predominant serovars were identified in genotypic serotyping, namely, Infantis (26.7%), Anatum (19.1%), Rissen (18.1%), and London (13.3%). Phenotypic antimicrobial resistance (AMR) profiling revealed that 65% of the isolates were resistant to at least one antibiotic, 37% were multidrug resistant (MDR), and 57% were extended-spectrum β-lactamase producers. Bioinformatic analysis revealed that isolates had resistance genes and plasmids belonging to the Col and Inc plasmid families that confer resistance against tetracycline (64%), sulfonamide (56%), and streptomycin (56%). Further analyses revealed the presence of 155 virulence genes, 42 of which were serovar-specific. The virulence genes primarily code for host immune system modulators, iron acquisition enzyme complexes, host cell invasion proteins, as well as proteins that allow intracellular and intramacrophage survival. This study showed that virulent MDR S. enterica and several phenotypic and genotypic AMR patterns were present in the food chain. It serves as a foundation to understand the current AMR status in the Philippines food chain and to prompt the creation of preventative measures and efficient treatments against foodborne pathogens.
Collapse
Affiliation(s)
- Jonah Feliza B Mora
- Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Vanessa Yvonne B Meclat
- Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Alyzza Marie B Calayag
- Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Susana Campino
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Julius C R Hafalla
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Martin L Hibberd
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Jody E Phelan
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Taane G Clark
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Windell L Rivera
- Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| |
Collapse
|
6
|
Sheng H, Suo J, Dai J, Wang S, Li M, Su L, Cao M, Cao Y, Chen J, Cui S, Yang B. Prevalence, antibiotic susceptibility and genomic analysis of Salmonella from retail meats in Shaanxi, China. Int J Food Microbiol 2023; 403:110305. [PMID: 37421839 DOI: 10.1016/j.ijfoodmicro.2023.110305] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/06/2023] [Accepted: 06/25/2023] [Indexed: 07/10/2023]
Abstract
Salmonella is a major foodborne pathogen that poses a substantial risk to food safety and public health. This study aimed to assess the prevalence, antibiotic susceptibility, and genomic features of Salmonella isolates recovered from 600 retail meat samples (300 pork, 150 chicken and 150 beef) from August 2018 to October 2019 in Shaanxi, China. Overall, 40 (6.67 %) of 600 samples were positive to Salmonella, with the highest prevalence in chicken (21.33 %, 32/150), followed in pork (2.67 %, 8/300), while no Salmonella was detected in beef. A total of 10 serotypes and 11 sequence types (STs) were detected in 40 Salmonella isolates, with the most common being ST198 S. Kentucky (n = 15), ST13 S. Agona (n = 6), and ST17 S. Indiana (n = 5). Resistance was most commonly found to tetracycline (82.50 %), followed by to ampicillin (77.50 %), nalidixic acid (70.00 %), kanamycin (57.50 %), ceftriaxone (55.00 %), cefotaxime (52.50 %), cefoperazone (52.50 %), chloramphenicol (50.00 %), levofloxacin (57.50 %), cefotaxime (52.50 %), kanamycin (52.50 %), chloramphenicol (50.00 %), ciprofloxacin (50.00 %), and levofloxacin (50.00 %). All ST198 S. Kentucky isolates showed multi-drug resistance (MDR; ≥3 antimicrobial categories) pattern. Genomic analysis showed 56 distinct antibiotic resistance genes (ARGs) and 6 target gene mutations of quinolone resistance determining regions (QRDRs) in 40 Salmonella isolates, among which, the most prevalent ARG types were related to aminoglycosides and β-lactams resistance, and the most frequent mutation in QRDRs was GyrA (S83F) (47.5 %). The number of ARGs in Salmonella isolates showed a significant positive correlation with the numbers of insert sequences (ISs) and plasmid replicons. Taken together, our findings indicated retail chickens were seriously contaminated, while pork and beef are rarely contaminated by Salmonella. Antibiotic resistance determinants and genetic relationships of the isolates provide crucial data for food safety and public health safeguarding.
Collapse
Affiliation(s)
- Huanjing Sheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jia Suo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jinghan Dai
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Siyue Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mei Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Li Su
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengyuan Cao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanwei Cao
- Hebei Quality Inspection and Testing Center of Forest, Grass and Flower, Shijiazhuang 050081, China
| | - Jia Chen
- College of Chemical Technology, Shijiazhuang University, Shijiazhuang 050035, China.
| | - Shenghui Cui
- National Institutes for Food and Drug Control, Beijing 100050, China.
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Yangling, Shaanxi 712100, China.
| |
Collapse
|
7
|
Yang C, Xiang Y, Qiu S. Resistance in Enteric Shigella and nontyphoidal Salmonella : emerging concepts. Curr Opin Infect Dis 2023; 36:360-365. [PMID: 37594001 PMCID: PMC10487366 DOI: 10.1097/qco.0000000000000960] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
PURPOSE OF REVIEW The emergence of globally resistant enteric Shigella and nontyphoidal Salmonella strains (NTS) has limited the selection of effective drugs, which has become a major challenge for the treatment of infections. The purpose of this review is to provide the current opinion on the antimicrobial-resistant enteric Shigella and nontyphoidal Salmonella . RECENT FINDINGS Enteric Shigella and NTS are resistant to almost all classes of antimicrobials in recent years. Those with co-resistance to ciprofloxacin, azithromycin and ceftriaxone, the first-line antibiotics for the treatment of infectious diarrhoea have emerged worldwide. Some of them have caused interregional and international spread by travel, trade, MSM, and polluted water sources. Several strains have even developed resistance to colistin, the last-resort antibiotic used for treatment of multidrug-resistant Gram-negative bacteria infections. SUMMARY The drug resistance of enteric Shigella and NTS is largely driven by the use of antibiotics and horizontal gene transfer of mobile genetic elements. These two species show various drug resistance patterns in different regions and serotypes. Hence treatment decisions for Shigella and Salmonella infections need to take into consideration prevalent antimicrobial drug resistance patterns. It is worth noting that the resistance genes such as blaCTX,mph, ermB , qnr and mcr , which can cause resistance to ciprofloxacin, cephalosporin, azithromycin and colistin are widespread because of transmission by IncFII, IncI1, IncI2 and IncB/O/K/Z plasmids. Therefore, continuous global monitoring of resistance in Shigella and Salmonella is imperative.
Collapse
Affiliation(s)
- Chaojie Yang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | | | | |
Collapse
|
8
|
Romanescu M, Oprean C, Lombrea A, Badescu B, Teodor A, Constantin GD, Andor M, Folescu R, Muntean D, Danciu C, Dalleur O, Batrina SL, Cretu O, Buda VO. Current State of Knowledge Regarding WHO High Priority Pathogens-Resistance Mechanisms and Proposed Solutions through Candidates Such as Essential Oils: A Systematic Review. Int J Mol Sci 2023; 24:9727. [PMID: 37298678 PMCID: PMC10253476 DOI: 10.3390/ijms24119727] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
Combating antimicrobial resistance (AMR) is among the 10 global health issues identified by the World Health Organization (WHO) in 2021. While AMR is a naturally occurring process, the inappropriate use of antibiotics in different settings and legislative gaps has led to its rapid progression. As a result, AMR has grown into a serious global menace that impacts not only humans but also animals and, ultimately, the entire environment. Thus, effective prophylactic measures, as well as more potent and non-toxic antimicrobial agents, are pressingly needed. The antimicrobial activity of essential oils (EOs) is supported by consistent research in the field. Although EOs have been used for centuries, they are newcomers when it comes to managing infections in clinical settings; it is mainly because methodological settings are largely non-overlapping and there are insufficient data regarding EOs' in vivo activity and toxicity. This review considers the concept of AMR and its main determinants, the modality by which the issue has been globally addressed and the potential of EOs as alternative or auxiliary therapy. The focus is shifted towards the pathogenesis, mechanism of resistance and activity of several EOs against the six high priority pathogens listed by WHO in 2017, for which new therapeutic solutions are pressingly required.
Collapse
Affiliation(s)
- Mirabela Romanescu
- Doctoral School, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.R.); (A.L.); (B.B.); (A.T.); (G.D.C.)
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.A.); (R.F.); (D.M.)
| | - Camelia Oprean
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania
- OncoGen Centre, County Hospital ‘Pius Branzeu’, Blvd. Liviu Rebreanu 156, 300723 Timisoara, Romania
| | - Adelina Lombrea
- Doctoral School, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.R.); (A.L.); (B.B.); (A.T.); (G.D.C.)
| | - Bianca Badescu
- Doctoral School, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.R.); (A.L.); (B.B.); (A.T.); (G.D.C.)
| | - Ana Teodor
- Doctoral School, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.R.); (A.L.); (B.B.); (A.T.); (G.D.C.)
| | - George D. Constantin
- Doctoral School, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.R.); (A.L.); (B.B.); (A.T.); (G.D.C.)
| | - Minodora Andor
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.A.); (R.F.); (D.M.)
| | - Roxana Folescu
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.A.); (R.F.); (D.M.)
| | - Delia Muntean
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.A.); (R.F.); (D.M.)
- Multidisciplinary Research Center on Antimicrobial Resistance, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Corina Danciu
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Olivia Dalleur
- Louvain Drug Research Institute, Université Catholique de Louvain, Avenue Emmanuel Mounier 73, 1200 Brussels, Belgium
| | - Stefan Laurentiu Batrina
- Faculty of Agriculture, University of Life Sciences “King Mihai I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania
| | - Octavian Cretu
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.A.); (R.F.); (D.M.)
| | - Valentina Oana Buda
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
- Ineu City Hospital, 2 Republicii Street, 315300 Ineu, Romania
| |
Collapse
|
9
|
Singer RS. Continued abuse of causal inference in studies of antimicrobial resistance: revisiting the confusion between ecological correlation and causation. J Glob Antimicrob Resist 2022; 30:485-486. [PMID: 35595180 DOI: 10.1016/j.jgar.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/11/2022] [Indexed: 11/19/2022] Open
Affiliation(s)
- Randall S Singer
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota.
| |
Collapse
|
10
|
Bernad-Roche M, Casanova-Higes A, Marín-Alcalá CM, Mainar-Jaime RC. Salmonella Shedding in Slaughter Pigs and the Use of Esterified Formic Acid in the Drinking Water as a Potential Abattoir-Based Mitigation Measure. Animals (Basel) 2022; 12:1620. [PMID: 35804519 PMCID: PMC9264893 DOI: 10.3390/ani12131620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/07/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Pigs shedding Salmonella at slaughter are considered a source of carcass contamination and human infection. To assess this potential risk, the proportion of Salmonella shedders that arrive for slaughter was evaluated in a population of 1068 pigs from 24 farms. Shedding was present in 27.3% of the pigs, and the monophasic variant of Salmonella Typhimurium, an emerging zoonotic serotype, was the most prevalent (46.9%). Antimicrobial resistance (AMR) in Salmonella isolates was common, but few isolates showed AMR to antimicrobials of critical importance for humans such as third-generation cephalosporins (5%), colistin (0%), or carbapenems (0%). However, AMR to tigecycline was moderately high (15%). The efficacy of an esterified formic acid in the lairage drinking water (3 kg formic acid/1000 L) was also assessed as a potential abattoir-based strategy to reduce Salmonella shedding. It was able to reduce the proportion of shedders (60.7% in the control group (CG) vs. 44.3% in the treatment group (TG); p < 0.01). After considering clustering and confounding factors, the odds of shedding Salmonella in the CG were 2.75 (95% CI = 1.80−4.21) times higher than those of the TG, suggesting a potential efficacy of reduction in shedding as high as 63.6%. This strategy may contribute to mitigating the burden of abattoir environmental contamination.
Collapse
Affiliation(s)
- María Bernad-Roche
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, 50013 Zaragoza, Spain; (M.B.-R.); (A.C.-H.)
| | - Alejandro Casanova-Higes
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, 50013 Zaragoza, Spain; (M.B.-R.); (A.C.-H.)
| | - Clara María Marín-Alcalá
- Departamento de Ciencia Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, 50059 Zaragoza, Spain;
| | - Raúl Carlos Mainar-Jaime
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, 50013 Zaragoza, Spain; (M.B.-R.); (A.C.-H.)
| |
Collapse
|