1
|
Li J, Yang J, Ouyang Z, Ren M, Zhao J. Molecular typing and clinical characteristics of Clostridioides difficile infection in patients with inflammatory bowel disease: a retrospective study. J Glob Antimicrob Resist 2025:S2213-7165(25)00083-9. [PMID: 40287014 DOI: 10.1016/j.jgar.2025.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 04/09/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND AND AIM The increasing incidence of Clostridioides difficile infection (CDI) has been associated with poorer prognosis of patients with inflammatory bowel disease (IBD). However, relevant data are limited in China. The aim of this study was to clarify the molecular types and clinical characteristics of C. difficile in IBD patients in China. METHODS Stool samples were collected, cultured anaerobically, and tested for glutamate dehydrogenase and C. difficile toxins A and B. Toxigenic C. difficile isolates were subjected to multilocus sequence typing and antimicrobial susceptibility testing. Clinical data were collected to compare IBD and non-IBD patients with CDI, and to determine the risk factors associated with CDI in IBD patients. RESULTS The incidence of CDI was significantly higher in IBD patients than non-IBD patients (27.2% vs. 9.0%, respectively). Among IBD patients, the dominant sequence types (STs) were ST54 (20.2%), ST2 (14.9%), ST3 (14.9%), and ST42 (13.2%). The STs with the highest multidrug resistance rates were ST37 (100%), ST35 (100%), and ST42 (73.3%). In IBD patients, hospitalization within 6 months and use of 5-aminosalicylic acid were independent risk factors for CDI. Other risk factors included the use of proton pump inhibitors, immunosuppressants, and corticosteroids. CONCLUSION The incidence of CDI was significantly higher in IBD patients than non-IBD patients. Surveillance of CDI in hospitalized patients should be strengthened to reduce the incidence of CDI in IBD patients.
Collapse
Affiliation(s)
- Jiayiren Li
- Hebei Provincial Center for Clinical Laboratories, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jing Yang
- Hebei Provincial Center for Clinical Laboratories, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zirou Ouyang
- Hebei Provincial Center for Clinical Laboratories, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Minghui Ren
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jianhong Zhao
- Hebei Provincial Center for Clinical Laboratories, The Second Hospital of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
2
|
Ngbede EO, Junker V, Kolte B, Frentrup M, Boldt J, Fawley WN, Wilcox MH, Kuijper EJ, Smits WK, Nübel U. Clostridioides difficile recovered from hospital patients, livestock and dogs in Nigeria share near-identical genome sequences. Microb Genom 2025; 11. [PMID: 39883484 DOI: 10.1099/mgen.0.001342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
Genomic data on Clostridioides difficile from the African continent are currently lacking, resulting in the region being under-represented in global analyses of C. difficile infection (CDI) epidemiology. For the first time in Nigeria, we utilized whole-genome sequencing and phylogenetic tools to compare C. difficile isolates from diarrhoeic human patients (n=142), livestock (n=38), poultry manure (n=5) and dogs (n=9) in the same geographic area (Makurdi, north-central Nigeria) and relate them to the global C. difficile population. In addition, selected isolates were tested for antimicrobial susceptibility (n=33) and characterized by PCR ribotyping (n=53). Hierarchical clustering of core-genome multilocus sequence typing (cgMLST) allelic profiles revealed large diversity at the level HC150 (i.e. clusters of related genomes with maximally 150 pairwise allelic differences), which was previously shown to correlate with PCR ribotypes (RT). While several globally disseminated strains were detected, including HC150_1 (associated with RT078), HC150_3 (RT001) and HC150_3622 (RT014), 42 HC150 clusters (79%) represented unique genotypes that were new to the public genomic record, and 16 (30%) of these were novel PCR ribotypes. Considerable proportions of the C. difficile isolates displayed resistance to fluoroquinolones, macrolides and linezolid, potentially reflecting human and animal antibiotic consumption patterns in the region. Notably, our comparative phylogenomic analyses revealed human-human, human-livestock and farm-farm sharing of near-identical C. difficile genomes (≤2 core-genome allelic differences), suggesting the continued spread of multiple strains across human and animal (pig, poultry, cattle and dog) host populations. Our findings highlight the interconnectivity between livestock production and the epidemiology of human CDI and inform the need for increased CDI awareness among clinicians in this region. A large proportion of C. difficile strains appeared to be unique to the region, reflecting both the significant geographic patterning present in the C. difficile population and a general need for additional pathogen sequencing data from Africa.
Collapse
Affiliation(s)
- Emmanuel O Ngbede
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Microbial Genome Research, Braunschweig, Germany
- Department of Veterinary Microbiology, Federal University of Agriculture, Makurdi, Nigeria
- Present address: Institute of Medical Microbiology and Hygiene University of Saarland, Homburg, Germany
| | - Vera Junker
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Microbial Genome Research, Braunschweig, Germany
| | - Baban Kolte
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Microbial Genome Research, Braunschweig, Germany
- Technical University Braunschweig, Institute of Microbiology, Braunschweig, Germany
| | - Martinique Frentrup
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Microbial Genome Research, Braunschweig, Germany
| | - Judith Boldt
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Microbial Genome Research, Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner Site Braunschweig-Hannover, Braunschweig, Germany
| | - Warren N Fawley
- School of Medicine, Leeds Teaching Hospitals and University of Leeds, Leeds, UK
| | - Mark H Wilcox
- School of Medicine, Leeds Teaching Hospitals and University of Leeds, Leeds, UK
| | - Ed J Kuijper
- Leiden University Medical Center, National Expertise Center for C. difficile Infections, Leiden, Netherlands
| | - Wiep Klaas Smits
- Leiden University Medical Center, National Expertise Center for C. difficile Infections, Leiden, Netherlands
| | - Ulrich Nübel
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Microbial Genome Research, Braunschweig, Germany
- Technical University Braunschweig, Institute of Microbiology, Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner Site Braunschweig-Hannover, Braunschweig, Germany
| |
Collapse
|
3
|
Dang Z, Yang B, Xia P, Huang J, Liao J, Li Y, Tang S, Han Q, Luo S, Xia Y. Antimicrobial susceptibilities, resistance mechanisms and molecular characteristics of toxigenic Clostridioides difficile isolates in a large teaching hospital in Chongqing, China. J Glob Antimicrob Resist 2024; 38:198-204. [PMID: 39048055 DOI: 10.1016/j.jgar.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 07/05/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
OBJECTIVES Clostridioides difficile ranks among the primary sources of healthcare-related infections and diarrhoea in numerous nations. We evaluated the drug susceptibility and resistance mechanisms of C. difficile isolates from a hospital in Chongqing, China, and identified resistance rates and resistance mechanisms that differed from previous findings. METHODS The toxin genes and drug resistance genes of clinical strains were detected using Polymerase Chain Reaction (PCR), and these strains were subjected to Multilocus Sequence Typing (MLST). The agar dilution technique was employed for assessing susceptibility of antibiotics. Clinical data collection was completed through a review of electronic medical records. RESULTS A total of 67 strains of toxin-producing C. difficile were detected. All C. difficile isolates demonstrated susceptibility to both metronidazole and vancomycin. However, resistance was observed in 8.95%, 16.42%, 56.72%, 56.72%, 31.34% and 5.97% of the isolates for tigecycline, tetracycline, clindamycin, erythromycin, moxifloxacin and rifampin, respectively. Among the strains with toxin genotypes A + B + CDT - and belonging to the ST3, six strains exhibited reduced susceptibility to tigecycline (MIC=0.5mg/L) and tetracycline (MIC=8mg/L). The tetA(P) and tetB(P) genes were present in these six strains, but were absent in tetracycline-resistant strains. Resistance genes (ermB, tetM, tetA(P) and tetB(P)) and mutations (in gyrA, gyrB, and rpoB) were identified in resistant strains. CONCLUSIONS In contrast to prior studies, we found higher proportions of ST3 isolates with decreased tigecycline sensitivity, sharing similar resistance patterns and resistance genes. In the resistance process of tigecycline and tetracycline, the tetA(P) and tetB(P) genes may play a weak role.
Collapse
Affiliation(s)
- Zijun Dang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bingxue Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peiwen Xia
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinzhu Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiajia Liao
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuqiong Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shiyu Tang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qi Han
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shengli Luo
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yun Xia
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
4
|
Tang M, Wang C, Xia Y, Tang J, Wang J, Shen L. Clostridioides difficile infection in inflammatory bowel disease: a clinical review. Expert Rev Anti Infect Ther 2024; 22:297-306. [PMID: 38676422 DOI: 10.1080/14787210.2024.2347955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
INTRODUCTION Strong clinical data demonstrate that inflammatory bowel disease (IBD) is an independent risk factor for Clostridiodes difficile infection (CDI) and suggest a globally increased prevalence and severity of C. difficile coinfection in IBD patients (CDI-IBD). In addition to elderly individuals, children are also at higher risk of CDI-IBD. Rapid diagnosis is essential since the clinical manifestations of active IBD and CDI-IBD are indistinguishable. Antibiotics have been well established in the treatment of CDI-IBD, but they do not prevent recurrence. AREAS COVERED Herein, the authors focus on reviewing recent research advances on the new therapies of CDI-IBD. The novel therapies include gut microbiota restoration therapies (such as prebiotics, probiotics and FMT), immunotherapy (such as vaccines and monoclonal antibodies) and diet strategies (such as groningen anti-inflammatory diet and mediterranean diet). Future extensive prospective and placebo-controlled studies are required to evaluate their efficacy and long-term safety. EXPERT OPINION Available studies show that the prevalence of CDI-IBD is not optimistic. Currently, potential treatment options for CDI-IBD include a number of probiotics and novel antibiotics. This review updates the knowledge on the management of CDI in IBD patients, which is timely and important for GI doctors and scientists.
Collapse
Affiliation(s)
- Mengjun Tang
- Central Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Chunhua Wang
- Central Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Ying Xia
- Central Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Jian Tang
- Central Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Jiao Wang
- Central Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang, China
| | - Liang Shen
- Central Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
- Department of Clinical Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| |
Collapse
|
5
|
Bassotti G, Fruganti A, Stracci F, Marconi P, Fettucciari K. Cytotoxic synergism of Clostridioides difficile toxin B with proinflammatory cytokines in subjects with inflammatory bowel diseases. World J Gastroenterol 2023; 29:582-596. [PMID: 36742168 PMCID: PMC9896618 DOI: 10.3748/wjg.v29.i4.582] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/03/2022] [Accepted: 12/27/2022] [Indexed: 01/20/2023] Open
Abstract
Clostridioides difficile (C. difficile) is progressively colonizing humans and animals living with humans. During this process, hypervirulent strains and mutated toxin A and B of C. difficile (TcdA and TcdB) are originating and developing. While in healthy subjects colonization by C. difficile becomes a risk after the use of antibiotics that alter the microbiome, other categories of people are more susceptible to infection and at risk of relapse, such as those with inflammatory bowel disease (IBD). Recent in vitro studies suggest that this increased susceptibility could be due to the strong cytotoxic synergism between TcdB and proinflammatory cytokines the tumor necrosis factor-alpha and interferon-gamma (CKs). Therefore, in subjects with IBD the presence of an inflammatory state in the colon could be the driver that increases the susceptibility to C. difficile infection and its progression and relapses. TcdB is internalized in the cell via three receptors: chondroitin sulphate proteoglycan 4; poliovirus receptor-like 3; and Wnt receptor frizzled family. Chondroitin sulphate proteoglycan 4 and Wnt receptor frizzled family are involved in cell death by apoptosis or necrosis depending on the concentration of TcdB and cell types, while poliovirus receptor-like 3 induces only necrosis. It is possible that cytokines could also induce a greater expression of receptors for TcdB that are more involved in necrosis than in apoptosis. Therefore, in subjects with IBD there are the conditions: (1) For greater susceptibility to C. difficile infection, such as the inflammatory state, and abnormalities of the microbiome and of the immune system; (2) for the enhancement of the cytotoxic activity of TcdB +Cks; and (3) for a greater expression of TcdB receptors stimulated by cytokines that induce cell death by necrosis rather than apoptosis. The only therapeutic approach currently possible in IBD patients is monitoring of C. difficile colonization for interventions aimed at reducing tumor necrosis factor-alpha and interferon-gamma levels when the infection begins. The future perspective is to generate bacteriophages against C. difficile for targeted therapy.
Collapse
Affiliation(s)
- Gabrio Bassotti
- Department of Medicine and Surgery, Gastroenterology, Hepatology & Digestive Endoscopy Section University of Perugia Medical School, Piazza Lucio Severi, Perugia 06132, Italy, and Santa Maria della Misericordia Hospital, Gastroenterology & Hepatology Unit Perugia 06156, Italy
| | - Alessandro Fruganti
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica 62024, Italy
| | - Fabrizio Stracci
- Medicine and Surgery, Hygiene and Public Health Section, University of Perugia, Perugia 06123, Italy
| | - Pierfrancesco Marconi
- Medicine and Surgery, Biosciences & Medical Embryology Section, University of Perugia, Perugia 06132, Italy
| | - Katia Fettucciari
- Medicine and Surgery, Biosciences & Medical Embryology Section, University of Perugia, Perugia 06132, Italy
| |
Collapse
|
6
|
Yin C, Song Z, Wang X, Li H, Liu Y, Wang Q, Feng X, Song X. Development and clinical application of a rapid, visually interpretable polymerase spiral reaction for tcdB gene of Clostridioides difficile in fecal cultures. FEMS Microbiol Lett 2023; 370:fnad080. [PMID: 37537148 DOI: 10.1093/femsle/fnad080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/14/2023] [Accepted: 08/02/2023] [Indexed: 08/05/2023] Open
Abstract
In the surveillance of outbreaks of Clostridioides difficile infection, the rapid detection and diagnosis of C. difficile remain a major challenge. Polymerase spiral reaction (PSR) is a nucleic acid amplification technique that uses mixed primers and the strand displacement activity of Bst DNA polymerase to achieve a pair of primers and a single enzyme in an isothermal environment. The primer design is simple, the reaction is efficient, and a color indicator can be used to visualize the result. In this study, we developed a rapid and visually interpretable PSR to detect C. difficile by analyzing artificially contaminated feces samples and clinical isolates from patient feces samples. We designed two pairs of primers for a PSR that specifically targeted the conserved tcdB gene of C. difficile. The amplification results were visualized with the chromogenic dye hydroxynaphthol blue. The entire process was accomplished in 50 min at 64°C, with high specificity. The limit of detection of C. difficile with PSR was 150 fg/μl genomic DNA or 2 × 10 CFU/ml in artificially contaminated feces samples. With this method, we analyzed four clinical isolates and also compared the PSR with an isolation-and-culture detection method, polymerase chain reaction, and the Sanger sequencing. The four clinical isolates were found positive for tcdB, which confirmed the high specificity of the primers. The positive rates of tcdB in toxigenic C. difficile detected with PSR, PCR, and Sanger sequencing were 100%. The proportions of toxin types in these clinical C. difficile strains were 50% tcdA+tcdB+CDT- and 50% tcdA+tcdB+CDT+. The assay described should extend our understanding of the incidence of C. difficile. This may allow the rapid diagnosis and screening of C. difficile-related disease outbreaks in the field.
Collapse
Affiliation(s)
- Caihong Yin
- Department of Hygienic Inspection, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun 130021, China
| | - Zhanyun Song
- Changchun Customs Technology Center, 4448 Freedom Road, Changchun, China
| | - Xianghui Wang
- Changchun Customs Technology Center, 4448 Freedom Road, Changchun, China
| | - Hui Li
- Changchun Customs Technology Center, 4448 Freedom Road, Changchun, China
| | - Yue Liu
- Department of Hygienic Inspection, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun 130021, China
| | - Qiulin Wang
- Department of Hygienic Inspection, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun 130021, China
| | - Xin Feng
- School of Public Health, College of Veterinary Medicine, Jilin University, 5333 Xi 'an Road, Changchun, China
| | - Xiuling Song
- Department of Hygienic Inspection, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun 130021, China
| |
Collapse
|