1
|
Zhan Z, He S, Chang J, Hu M, Zhang Z, Cui Y, Shi X. Characterization of novel mutations involved in the development of resistance to colistin in Salmonella isolates from retail pork in Shanghai, China. Int J Food Microbiol 2025; 430:111027. [PMID: 39880505 DOI: 10.1016/j.ijfoodmicro.2024.111027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 12/08/2024] [Accepted: 12/15/2024] [Indexed: 01/31/2025]
Abstract
Salmonella is an important foodborne pathogen that poses a significant threat to food safety. This study aims to assess the prevalence, genomic features, and colistin-resistant mechanisms of Salmonella isolates collected from 118 retail pork samples from January 2021 to January 2022 in Shanghai, China. Overall, 46 (39.0 %, 46/118) Salmonella isolates were collected, which were identified as 12 serotypes by genomic analysis, including Salmonella Typhimurium (n = 17) and Salmonella London (n = 6). Antimicrobial resistance profiling revealed that the resistance rate of these isolates to colistin was 13.0 % (6/46), while 60.9 % (28/46) exhibited multidrug-resistant. It was found that there were 51 distinct antimicrobial resistance genes in these 46 isolates, which were predominantly associated with resistance to aminoglycosides, fluoroquinolones, and β-lactams. More importantly, among six colistin-resistant isolates, two isolates (Salmonella Schwarzengrund and Salmonella Indiana) were found to carry the mcr-1 gene. The mechanism of resistance in the remaining four colistin-resistant isolates was further studied, and it was found that there were nine amino acid substitutions in PmrAB. It was demonstrated by site-directed mutagenesis that novel substitutions G53W in PmrA and I83V in PmrB led to colistin resistance in Salmonella (MIC = 2 or 4 μg/mL). Analysis results by real-time quantitative PCR and mass spectrometry indicated that the mutants PmrAG53W and PmrBI83V displayed higher expression levels of the gene pmrE than in the parental strain. This upregulation resulted in an increase in the production of 4-amino-4-deoxy-l-arabinose (L-Ara4N) that modified lipid A, thereby conferring resistance to colistin. These findings demonstrated that there was a high prevalence of MDR Salmonella isolates in retail pork in Shanghai, and the substitution G53W in PmrA and I83V in PmrB were independent factors contributing to the development of resistance to colistin in Salmonella via modification of lipid A with L-Ara4N.
Collapse
Affiliation(s)
- Zeqiang Zhan
- MOST-USDA Joint Research Center for Food Safety and NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shoukui He
- MOST-USDA Joint Research Center for Food Safety and NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiang Chang
- MOST-USDA Joint Research Center for Food Safety and NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mengjun Hu
- MOST-USDA Joint Research Center for Food Safety and NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zengfeng Zhang
- MOST-USDA Joint Research Center for Food Safety and NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Cui
- MOST-USDA Joint Research Center for Food Safety and NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xianming Shi
- MOST-USDA Joint Research Center for Food Safety and NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
2
|
Qiu Y, Xu H, Huang M, Chen J, Yang J, Weng S. Phenotypic and genomic characterization of a multidrug-resistant Salmonella enterica serovar Kentucky ST198 isolated from a patient in China. J Glob Antimicrob Resist 2024; 38:106-110. [PMID: 38723710 DOI: 10.1016/j.jgar.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 06/29/2024] Open
Abstract
OBJECTIVES The objective of this study was to investigate the resistance mechanisms of a multidrug-resistant Salmonella Kentucky ST198 FJ-2064 isolated from a patient in China. METHODS The antimicrobial susceptibility of FJ-2064 was determined by the standard disc dilution and broth microdilution methods. The complete genome of FJ-2064 was sequenced using PacBio and Illumina MiSeq platforms. Polymerase chain reaction (PCR) and S1-PFGE were utilized to confirm the mutation sites and the genomic plasmids, respectively. RESULTS Isolate FJ-2064 belongs to sequence type ST198 and harboured no visible large plasmids, but was concurrent resistant to 22 detected antimicrobial agents including cefotaxime, ciprofloxacin, and azithromycin. The complete genome sequence identified 20 acquired antibiotic resistance genes (ARGs) and five chromosomal mutations in the gyrA and parC genes of the quinolone resistance determining regions (QRDRs) in FJ-2064. In addition, PCR sequencing confirmed that most of the ARGs were clustered on one multidrug-resistant region and a variant of SGI1-K. In particular, the bla-TEM-1 and bla-CTX-M-55, qnrS1, mph(A) genes, which confer resistance to cephalosporins, quinolones, and macrolides respectively, were all located on the multidrug-resistant region. CONCLUSIONS We have demonstrated one multidrug-resistant region and a variant of SGI1-K in a Salmonella Kentucky ST198 that is co-resistant to cefotaxime, ciprofloxacin, and azithromycin.
Collapse
Affiliation(s)
- Yufeng Qiu
- Fujian Provincial Center for Disease Control and Prevention, Fuzhou 350011, China; Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou 350011, China; Fujian Institute of Preventive Medicine, Fuzhou, 350012, China
| | - Haibin Xu
- Fujian Provincial Center for Disease Control and Prevention, Fuzhou 350011, China; Fujian Institute of Preventive Medicine, Fuzhou, 350012, China
| | - Mengying Huang
- Fujian Provincial Center for Disease Control and Prevention, Fuzhou 350011, China; Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou 350011, China
| | - Jianhui Chen
- Fujian Provincial Center for Disease Control and Prevention, Fuzhou 350011, China
| | - Jinsong Yang
- Fujian Provincial Center for Disease Control and Prevention, Fuzhou 350011, China; Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou 350011, China; Fujian Institute of Preventive Medicine, Fuzhou, 350012, China
| | - Shuntai Weng
- Fujian Provincial Center for Disease Control and Prevention, Fuzhou 350011, China; Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou 350011, China; Fujian Institute of Preventive Medicine, Fuzhou, 350012, China.
| |
Collapse
|
3
|
Qu M, Huang Y, Lyu B, Zhang X, Tian Y, Feng Z, Gao Z, Zhang D. Prevalence and Genomic Characterization of Multidrug-Resistant Salmonella enterica Serovar Kentucky Sequence Type 198 Circulating - Beijing Municipality, China, 2016-2023. China CDC Wkly 2024; 6:825-833. [PMID: 39211441 PMCID: PMC11350233 DOI: 10.46234/ccdcw2024.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Highly fluoroquinolone-resistant Salmonella enterica serovar Kentucky (S. Kentucky) of sequence type (ST) 198 has emerged as a global multidrug-resistant (MDR) clone, posing a threat to public health. Methods Whole genome sequencing and antibiotic susceptibility testing was used to characterize the population structure and evolutionary history of 54 S. Kentucky isolates recovered from food and human clinical cases in Beijing from 2016 to 2023. Results All 54 S. Kentucky ST198 isolates exhibited resistance to quinolones, carrying point mutations in the quinolone resistance-determining regions (gyrA_S83F and parC_S80I). Resistance to other antibiotics (folate pathway inhibitors, cephems, aminoglycosides, phenicols, rifamycin, fosfomycin, macrolides, and tetracyclines), mediated by the sul1, sul2, dfrA14, bla CTX-M, bla TEM-1B, aac(3)-Id, aadA2, aadA7, aph(3')-I, aph(3'')-Ib, rmtB, floR, arr-2, fosA, mph(A), and tet(A) genes, was also observed in different combinations. The Beijing S. Kentucky ST198 evolutionary tree was divided into clades 198.2-1 and 198.2-2, which were further differentiated into three subclades: 198.2-2A, 198.2-2B, and 198.2-2C. Compared with the extended-spectrum β-lactamase-encoding gene bla CTX-M-14b in 198.2-1, the co-existence of bla CTX-M-55 and bla TEM-1B, as well as chromosomally located qnrS1, was detected in most 198.2-2 isolates, which showed more complex MDR phenotypes. S. Kentucky ST198 outbreak isolates derived from two predominant clonal sources: 198.2-1 with cgST236434 and 198.2-2A with cgST296405. Conclusions The S. Kentucky population in Beijing is genetically diverse, consisting of multiple co-circulating lineages that have persisted since 2016. Strengthening surveillance of food and humans will aid in implementing measures to prevent and control the spread of AMR.
Collapse
Affiliation(s)
- Mei Qu
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Ying Huang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Bing Lyu
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Xin Zhang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Yi Tian
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Zhaomin Feng
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Zhiyong Gao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Daitao Zhang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, China
| |
Collapse
|
4
|
Chen F, Tang H, Lin J, Kang R, Tang D, Liu J. Ciprofloxacin is a novel anti-ferroptotic antibiotic. Heliyon 2024; 10:e32571. [PMID: 38961954 PMCID: PMC11219506 DOI: 10.1016/j.heliyon.2024.e32571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/20/2024] [Accepted: 06/05/2024] [Indexed: 07/05/2024] Open
Abstract
Cancer patients undergoing chemotherapy are susceptible to various bacterial infections, necessitating prompt and precise antimicrobial treatment with antibiotics. Ciprofloxacin is a clinically utilized broad-spectrum antimicrobial agent known for its robust antiseptic activity. While ferroptosis, an oxidative form of cell death, has garnered attention as a promising avenue in cancer therapy, the potential impact of ciprofloxacin on the anticancer effects of ferroptosis remains unclear. This study seeks to investigate the potential influence of antibiotics on ferroptosis in human pancreatic ductal adenocarcinoma (PDAC) cells. Here, we report a previously unrecognized role of ciprofloxacin in inhibiting ferroptosis in human PDAC cells. Mechanistically, ciprofloxacin suppresses erastin-induced endoplasmic reticulum (ER) stress through the activating transcription factor 6 (ATF6) and ER to nucleus signaling 1 (ERN1) pathway. Excessive ER stress activation can trigger glutathione peroxidase 4 (GPX4) degradation through autophagic mechanisms. In contrast, ciprofloxacin enhances the protein stability of GPX4, a crucial regulator that suppresses ferroptosis by inhibiting lipid peroxidation. Thus, our study demonstrates the anti-ferroptotic role of ciprofloxacin, highlighting the importance of careful consideration when contemplating the combination of ciprofloxacin with specific ferroptosis inducers in PDAC patients.
Collapse
Affiliation(s)
- Fangquan Chen
- DAMP Laboratory, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510150, China
| | - Hu Tang
- DAMP Laboratory, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510150, China
| | - Junhao Lin
- DAMP Laboratory, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510150, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jiao Liu
- DAMP Laboratory, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510150, China
| |
Collapse
|
5
|
Jiang Y, Yang H, Wang ZY, Lin DC, Jiao X, Hu Y, Wang J. Persistent Colonization of Ciprofloxacin-Resistant and Extended-Spectrum β-Lactamase (ESBL)-Producing Salmonella enterica Serovar Kentucky ST198 in a Patient with Inflammatory Bowel Disease. Infect Drug Resist 2024; 17:1459-1466. [PMID: 38628240 PMCID: PMC11020243 DOI: 10.2147/idr.s447971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/01/2024] [Indexed: 04/19/2024] Open
Abstract
Objective Salmonella enterica serovar Kentucky ST198 has emerged as a global threat to humans. In this study, we aimed to characterize the prolonged carriage of ciprofloxacin-resistant and extended-spectrum β-lactamase (ESBL)-producing S. Kentucky ST198 in a single patient with inflammatory bowel disease (IBD). Methods Three S. Kentucky strains were collected from a single patient with IBD on 11th January, 23rd January, and 8th February, 2022, respectively. Antimicrobial susceptibility testing, whole-genome sequencing, and phylogenetic analysis with 38 previously described Chinese S. Kentucky ST198 strains from patients and food were performed. Results All three S. Kentucky isolates belonged to ST198. They carried identical 16 resistance genes, such as blaCTX-M-55, tet(A), and qnrS1, and had identical mutations within gyrA (S83F and D87N) and parC (S80I). Therefore, they exhibited identical multidrug-resistant profiles, including the clinically important antibiotics cephalosporins (ceftazidime and cefepime), fluoroquinolones (ciprofloxacin and levofloxacin), and third-generation tetracycline (tigecycline). Our three S. Kentucky strains were classified into the subclade ST198.2-2, and were genetically identical (2-6 SNPs) to each other. They exhibited a close genetic similarity (15-20 SNPs) to the isolate NT-h3189 from a patient and AH19MCS1 from chicken meat in China, indicating a possible epidemiological link between these S. Kentucky ST198 isolates from the patients and chicken meat. Conclusion Long-term colonization of ciprofloxacin-resistant and ESBL-producing S. Kentucky ST198 in a single patient is a matter of concern. Due to the potential transfer of S. Kentucky ST198 from food sources to humans, ongoing surveillance of this particular clone in animals, animal-derived food products, and humans should be strengthened.
Collapse
Affiliation(s)
- Yue Jiang
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, People’s Republic of China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, 225009, People’s Republic of China
| | - Huilin Yang
- Department of Clinical Laboratory, Peking University Shenzhen Hospital, Shenzhen, 518036, People’s Republic of China
| | - Zhen-Yu Wang
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, People’s Republic of China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, 225009, People’s Republic of China
| | - Da-Chuan Lin
- Guangdong Key Laboratory of Regional Immunity and Diseases, Shenzhen University School of Medicine, Shenzhen University, Shenzhen, 518060, People’s Republic of China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, People’s Republic of China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, 225009, People’s Republic of China
| | - Yunlong Hu
- Department of Clinical Laboratory, Peking University Shenzhen Hospital, Shenzhen, 518036, People’s Republic of China
- Guangdong Key Laboratory of Regional Immunity and Diseases, Shenzhen University School of Medicine, Shenzhen University, Shenzhen, 518060, People’s Republic of China
| | - Jing Wang
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, People’s Republic of China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, 225009, People’s Republic of China
| |
Collapse
|
6
|
Wang Z, Jiang Y, Xu H, Jiao X, Wang J, Li Q. Poultry production as the main reservoir of ciprofloxacin- and tigecycline-resistant extended-spectrum β-lactamase (ESBL)-producing Salmonella enterica serovar Kentucky ST198.2-2 causing human infections in China. Appl Environ Microbiol 2023; 89:e0094423. [PMID: 37610223 PMCID: PMC10537671 DOI: 10.1128/aem.00944-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/08/2023] [Indexed: 08/24/2023] Open
Abstract
Salmonella enterica serovar Kentucky (S. Kentucky) has been regarded as a common serotype causing human nontyphoidal salmonellosis, frequently associated with the consumption of contaminated poultry products. Recently, multidrug-resistant (MDR) S. Kentucky ST198 with strong resistance to cefotaxime, ciprofloxacin, and tigecycline has emerged and been frequently detected in both poultry and humans in Europe and Asia. In this study, whole-genome sequencing (WGS) analysis divided 327 S. Kentucky ST198 isolates into two clades, of which ST198.2 is more prevalent than ST198.1 worldwide. We further compared the genomic characteristics of 70 ST198 isolates from animals and humans during 2019-2022 plus previously reported 38 isolates from 2013 to 2019 in China. One hundred five of the 108 isolates were ST198.2, which could be differentiated into two subclades. ST198.2-1 was prevalent in isolates during 2013-2019, while ST198.2-2 has increased to be the predominant subclade in isolates since 2019. CRISPR typing can differentiate the clade ST198.1 isolates from clade ST198.2 ones but cannot differentiate the two subclade isolates. The acquisition of a large multi-drug resistant region in ST198.2-2 enhanced bacterial resistance to β-lactam, aminoglycoside, amphenicol, and fosfomycin. In addition, compared with the extended-spectrum β-lactamase (ESBL)-encoding gene blaCTX-M-14b in ST198.2-1, co-existence of blaCTX-M-55 and blaTEM-1B was detected in most of the ST198.2-2 isolates. The emergence of ciprofloxacin- and tigecycline-resistant ESBL-producing S. Kentucky ST198.2-2 strains highlight the necessity for Salmonella surveillance. It is imperative to implement more effective measures to prevent and control transmission of these strains from poultry to humans. IMPORTANCE Salmonella enterica serovar Kentucky (S. Kentucky) can cause human infections through consumption of contaminated food of animal origin, and the emergence of multidrug-resistant (MDR) ST198-S. Kentucky strains are of concern for human and animal health. Based on whole-genome sequencing (WGS) analysis, this study revealed that the clade ST198.2-2 S. Kentucky has increased to the predominant group in both chickens and humans in China since 2019, which is different to previous studies of the prevalent ST198.2-1 S. Kentucky before 2019. Acquirement of a multidrug resistance region (MRR) makes the ST198.2-2 S. Kentucky to be extensively drug-resistant (XDR) isolate compared with ST198.2-1 S. Kentucky. Besides, the ST198.2-2 S. Kentucky was mainly detected in chickens (chicken meat, intestinal contents, and slaughterhouse) and humans, indicating chicken is the main reservoir for these XDR S. Kentucky isolates. Therefore, it is necessary to implement continuous Salmonella surveillance and effective measures, such as the development of phages and novel antibiotics/compounds, to prevent the transmission of XDR ST198.2-2 S. Kentucky from chickens to humans across China.
Collapse
Affiliation(s)
- Zhenyu Wang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Yue Jiang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Haiyan Xu
- Nantong Center for Disease Control and Prevention, Nantong, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Jing Wang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Qiuchun Li
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
7
|
Santana-Hernández KM, Rodríguez-Ponce E, Medina IR, Acosta-Hernández B, Priestnall SL, Vega S, Marin C, Cerdà-Cuéllar M, Marco-Fuertes A, Ayats T, García Beltrán T, Lupiola-Gómez PA. One Health Approach: Invasive California Kingsnake ( Lampropeltis californiae) as an Important Source of Antimicrobial Drug-Resistant Salmonella Clones on Gran Canaria Island. Animals (Basel) 2023; 13:1790. [PMID: 37889724 PMCID: PMC10251910 DOI: 10.3390/ani13111790] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 07/30/2023] Open
Abstract
The increase in the reptile population has led to a rise in the number of zoonotic infections due to close contact with reptiles, with reptile-associated salmonellosis being particularly relevant. California kingsnake invasion not only threatens the endemic reptile population of the island of Gran Canaria (Spain) but also poses serious public health problems by spreading zoonotic pathogens and their antimicrobial resistance (AMR) to the environment. Thus, the aim of this study was to assess the occurrence, genetic diversity, and AMR among Salmonella spp. strains isolated from California kingsnakes in Gran Canaria Island (Spain). Of 73 invasive individuals captured, 20.5% carried Salmonella spp., belonging to different subspecies and serovars, with subsp. salamae as the most abundant. Pulsed-field electrophoresis showed high genetic diversity among subsp. salamae isolates, and among these, 73.3% showed resistance to at least one of the antimicrobials tested. In conclusion, the present study revealed the importance of wild invasive California kingsnakes as reservoirs of drug-resistant Salmonella spp. that could pose a direct threat to livestock and humans. Identification of drug-resistant Salmonella strains in wildlife provides valuable information on potential routes of transmission that involve risks to public and animal health.
Collapse
Affiliation(s)
- Kevin M. Santana-Hernández
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria, 35413 Arucas, Spain; (K.M.S.-H.); (E.R.-P.); (I.R.M.); (B.A.-H.)
| | - Eligia Rodríguez-Ponce
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria, 35413 Arucas, Spain; (K.M.S.-H.); (E.R.-P.); (I.R.M.); (B.A.-H.)
| | - Inmaculada Rosario Medina
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria, 35413 Arucas, Spain; (K.M.S.-H.); (E.R.-P.); (I.R.M.); (B.A.-H.)
- Instituto Universitario de Sanidad Animal (IUSA), Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria, 35413 Arucas, Spain
| | - Begoña Acosta-Hernández
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria, 35413 Arucas, Spain; (K.M.S.-H.); (E.R.-P.); (I.R.M.); (B.A.-H.)
- Instituto Universitario de Sanidad Animal (IUSA), Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria, 35413 Arucas, Spain
| | - Simon L. Priestnall
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hatfield AL9 7TA, UK;
| | - Santiago Vega
- Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Alfara del Patriarca, Spain; (C.M.)
| | - Clara Marin
- Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Alfara del Patriarca, Spain; (C.M.)
| | - Marta Cerdà-Cuéllar
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| | - Ana Marco-Fuertes
- Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Alfara del Patriarca, Spain; (C.M.)
| | - Teresa Ayats
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| | - Teresa García Beltrán
- Instituto Universitario de Sanidad Animal (IUSA), Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria, 35413 Arucas, Spain
| | - Pablo A. Lupiola-Gómez
- Departamento de Ciencias Clínicas, Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria, 35413 Arucas, Spain
| |
Collapse
|
8
|
Jiang Y, Wang ZY, Li QC, Lu MJ, Wu H, Mei CY, Shen PC, Jiao X, Wang J. Characterization of Extensively Drug-Resistant Salmonella enterica Serovar Kentucky Sequence Type 198 Isolates from Chicken Meat Products in Xuancheng, China. Microbiol Spectr 2023; 11:e0321922. [PMID: 36847509 PMCID: PMC10100706 DOI: 10.1128/spectrum.03219-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 02/02/2023] [Indexed: 03/01/2023] Open
Abstract
The purpose of this study was to characterize extensively drug-resistant Salmonella enterica serovar Kentucky sequence type 198 (ST198) isolates from chicken meat products. Ten S. Kentucky strains obtained from chicken meat products in Xuancheng, China, carried 12 to 17 resistance genes, such as blaCTX-M-55, rmtB, tet(A), floR, and fosA3, combined with mutations within gyrA (S83F and D87N) and parC (S80I), resulting in resistance to numerous antimicrobial agents, including the clinically important antibiotics cephalosporin, ciprofloxacin, tigecycline, and fosfomycin. These S. Kentucky isolates shared a close phylogenetic relationship (21 to 36 single-nucleotide polymorphisms [SNPs]) and showed close genetic relatedness to two human clinical isolates from China. Three S. Kentucky strains were subjected to whole-genome sequencing using Pacific Biosciences (PacBio) single-molecule real-time (SMRT) technology. All antimicrobial resistance genes were located on their chromosomes and clustered in one multiresistance region (MRR) and Salmonella genomic island (SGI) SGI1-K. The MRRs in three S. Kentucky strains were bounded by IS26 at both ends and were inserted downstream of the bcfABCDEFG cluster with 8-bp direct repeats. The MRRs were related to those of IncHI2 plasmids but differed by insertions, deletions, and rearrangements of multiple segments involving resistance genes and plasmid backbones. This finding suggests that the MRR fragment possibly originates from IncHI2 plasmids. Four SGI1-K variants with slight differences were identified in 10 S. Kentucky strains. Mobile elements, particularly IS26, play an essential role in forming distinct MRRs and SGI1-K structures. In conclusion, the emergence of extensively drug-resistant S. Kentucky ST198 strains containing numerous chromosomally located resistance genes is alarming and needs continued surveillance. IMPORTANCE Salmonella spp. are important foodborne pathogens, and multidrug-resistant (MDR) Salmonella strains have become a serious threat to clinical therapy. MDR S. Kentucky ST198 strains have been increasingly reported from various sources and have become a global risk. In this study, we described extensively drug-resistant S. Kentucky ST198 strains from chicken meat products from a city in China. Numerous resistance genes are clustered in the chromosomes of S. Kentucky ST198 strains, possibly acquired with the help of mobile elements. This would facilitate the spread of numerous resistance genes as intrinsic chromosomal genes within this global epidemic clone, with the potential to capture more resistance genes. The emergence and dissemination of extensively drug-resistant S. Kentucky ST198 pose a severe clinical and public health threat; therefore, continuous surveillance is warranted.
Collapse
Affiliation(s)
- Yue Jiang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Zhen-Yu Wang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Qiu-Chun Li
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Meng-Jun Lu
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Han Wu
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Cai-Yue Mei
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Peng-Cheng Shen
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| | - Jing Wang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
9
|
Effects of Nursing Care for the Treatment of Patients with Bladder Cancer: A Systematic Review and Meta-analysis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:9554223. [PMID: 36199769 PMCID: PMC9527440 DOI: 10.1155/2022/9554223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022]
Abstract
Purpose. In this study, a systematic review and meta-analysis were used to examine the effectiveness of nursing care in the treatment of bladder cancer patients. The platforms of PubMed, Embase, Cochrane Library, and Web of Science were used to conduct a thorough literature search. Methods. The searching approach was used to find the fundamental characteristics of 5 studies. Sample size ranged from 52 to 131,852, and total sample size was 151,166. The study was looked up in PubMed, Embase, and Web of Science, with the most recent search being done in July 2022. Utilizing a standardized form, two independent reviewers gathered pertinent information from research that qualified as literature (17). Review Manager 5.3 used the data to examine the literature. Statistics were deemed significant at
. Results. We discovered that more bladder cancer patients with T1+T2 tumor stages were receiving nursing care than those with T1+T2 tumor stages were receiving control care (mean difference =1.27, 95% CI: 1.20-1.35,
). The proportion of bladder cancer patients with T3+T4 tumor stage in the nursing care group was lower than the proportion of patients with T3+T4 tumor stage in the control group (mean difference = 1.07; 95% CI: 1.01-1.14;
). The difference between the number of bladder cancer patients receiving radiotherapy in the nursing care group and the control group was not statistically significant (mean difference = 1.07, 95% confidence interval [CI]: 0.99-1.16,
). There were fewer patients with bladder cancer receiving chemotherapy in the nursing care group than that in the control group (mean difference = -0.02, 95% CI: -0.0-0.02,
). The incidence rate of patients with bladder cancer with major complications in nursing care group was lower than that of patients with bladder cancer with major complications in control group (mean difference = 0.41 95% CI: 0.18-0.93,
). When compared to patients with bladder cancer who had serious complications in the control group, the hospital death rate for nursing care patients had a greater incidence of bladder cancer patients (mean difference = 4.64 95% CI: 4.46-4.82,
). Conclusion. This study demonstrated that the effects of nursing care reduced the incidence rate of chemotherapy and the frequency of severe problems in bladder cancer patients.
Collapse
|