1
|
Flores-Vega VR, Partida-Sanchez S, Ares MA, Ortiz-Navarrete V, Rosales-Reyes R. High-risk Pseudomonas aeruginosa clones harboring β-lactamases: 2024 update. Heliyon 2025; 11:e41540. [PMID: 39850428 PMCID: PMC11754179 DOI: 10.1016/j.heliyon.2024.e41540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/22/2024] [Accepted: 12/26/2024] [Indexed: 01/25/2025] Open
Abstract
Carbapenem-resistant Pseudomonas aeruginosa is defined by the World Health Organization as a "high priority" in developing new antimicrobials. Indeed, the emergence and spread of multidrug-resistant (MDR) or extensively drug-resistant (XDR) bacteria increase the morbidity and mortality risk of infected patients. Genomic variants of P. aeruginosa that display phenotypes of MDR/XDR have been defined as high-risk global clones. In this mini-review, we describe some international high-risk clones that carry β-lactamase genes that can produce chronic colonization and increase infected patients' morbidity and mortality rates.
Collapse
Affiliation(s)
- Verónica Roxana Flores-Vega
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Santiago Partida-Sanchez
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Miguel A. Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Vianney Ortiz-Navarrete
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Roberto Rosales-Reyes
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
2
|
Zhou L, Yao J, Zhang Y, Zhang X, Hu Y, Liu H, He J, Yu Y, Chen M, Tu Y, Li X. Global phylogeography and genetic characterization of carbapenem and ceftazidime-avibactam resistant KPC-33-producing Pseudomonas aeruginosa. NPJ ANTIMICROBIALS AND RESISTANCE 2025; 3:3. [PMID: 39843962 PMCID: PMC11721088 DOI: 10.1038/s44259-024-00073-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/16/2024] [Indexed: 01/24/2025]
Abstract
Ceftazidime-avibactam (CZA) is currently one of the last resorts used to treat infections caused by carbapenem-resistant Enterobacteriaceae and Pseudomonas aeruginosa. However, KPC variants have become the main mechanism mediating CZA resistance in KPC-producing gram-negative bacteria after increasing the application of CZA. Our previous study revealed that CZA-resistant KPC-33 had emerged in carbapenem-resistant P. aeruginosa (CRPA) and had resulted in death due to hypervirulence and extensive drug resistance; however, the evolutionary path of KPC-33-producing CRPA has not been investigated. Here, we observed the emergence of blaKPC-33 in CRPA under drug pressure, leading to resistance to CZA. We further elucidated the pathway of resistance development due to blaKPC mutations in P. aeruginosa. Three KPC-producing P. aeruginosa (KPC-PA) strains (including one blaKPC-33-positive strain and two blaKPC-2-positive strains) were successively isolated from a hospitalized patient. The blaKPC-33-positive CZA-resistant strain SRPA0656 (CZA MIC >128 μg/mL, imipenem MIC = 32 μg/mL) was isolated after the blaKPC-2-positive P. aeruginosa SRP2863 (CZA MIC = 1 μg/mL, imipenem MIC >128 μg/mL) was treated with CZA. The subsequent use of carbapenems to treat the infection led to the re-emergence of the KPC-2-producing strain SRPA3703. Additionally, we collected four other KPC-33-producing P. aeruginosa strains. Antimicrobial susceptibility testing revealed that all the KPC-33-bearing P. aeruginosa strains in this study were multidrug-resistant but susceptible to colistin and amikacin. Whole-genome sequencing indicated that blaKPC-33 was located on two Tn4401-like transposons contained in the plasmids and that most of these plasmids could be transferred into P. aeruginosa PAO1Rif isolates. Growth rate determination demonstrated that the relative growth rate of P. aeruginosa harboring blaKPC-33 was faster than that of P. aeruginosa harboring blaKPC-2 in the logarithmic phase. Global phylogenetic analysis revealed that most KPC-PA strains were isolated from China and the USA. MLST revealed that the most common ST in KPC-PA was ST463, which was detected only in China, and that all the strains carried blaKPC-2 or its derivatives. These results indicated that the use of CZA for the treatment of KPC-2-producing P. aeruginosa may have contributed to the evolution of KPC-33. The widespread dissemination of KPC-PA (especially the ST463) and Tn4401 transposons may increase the spread of CRPA isolates carrying blaKPC-33. Close attention to the development of resistance to CZA during clinical treatment of CRPA infection and monitoring CZA-resistant strains is necessary to prevent further spread.
Collapse
Affiliation(s)
- Longjie Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Jiayao Yao
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Ying Zhang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Xiaofan Zhang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Yueyue Hu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Haiyang Liu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Jintao He
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Yunsong Yu
- Center for General Practice Medicine, Department of Infectious Diseases, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Minhua Chen
- Center for General Practice Medicine, Department of Infectious Diseases, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China.
| | - Yuexing Tu
- Department of Critical care medicine, Tongde Hospital of Zhejiang Province, #234 Gucui Road, Hangzhou, Zhejiang, 310012, China.
| | - Xi Li
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China.
| |
Collapse
|
3
|
Zhang P, Hu J, Wu W, Shi W, Jiang Y, Yu Y, Zheng X, Qu T. Evolutionary adaptation of KPC-2-producing Pseudomonas aeruginosa high-risk sequence type 463 in a lung transplant patient. Int J Antimicrob Agents 2024; 64:107279. [PMID: 39069228 DOI: 10.1016/j.ijantimicag.2024.107279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024]
Abstract
OBJECTIVES KPC-2-producing Pseudomonas aeruginosa high-risk sequence type (ST) 463 is increasingly prevalent in China and poses severe threats to public health. In this study, we aimed to investigate within-host adaptive evolution of this clone during therapy. METHODS Using nine serial respiratory isolates from a post-lung transplantation patient undergoing multiple antibiotic treatments, we conducted genomic, transcriptomic and phenotypic analyses to uncover the adaptive mechanisms of a KPC-2-producing ST463 P. aeruginosa strain. RESULTS The early-course isolates exhibited low-level resistance to ceftazidime/avibactam (CZA), facilitated by the blaKPC-2 gene's presence on both chromosome and plasmid, and its overexpression. Comparative genomic analysis revealed that chromosomal integration of blaKPC-2 resulted from intracellular replicative transposition of the plasmid-derived IS26-blaKPC-2-IS26 composite transposon. As the infection progressed, selective pressures, predominantly from antibiotic interventions and host immune response, led to significant genomic and phenotypic changes. The late-course isolates developed a Δ242-GT-243 deletion in plasmid-encoded blaKPC-2 (blaKPC-14) after sustained CZA exposure, conferring high-level CZA resistance. Increased expression of pili and extracellular polysaccharides boosted biofilm formation. A D143N mutation in the global regulator vfr rendered the strain aflagellate by abrogating the ability of fleQ to positively regulate flagellar gene expression. The enhancement of antibiotic resistance and immune evasion collaboratively facilitated the prolonged survival of ST463 P. aeruginosa within the host. CONCLUSIONS Our findings highlight the remarkable capacity of ST463 P. aeruginosa in adapting to the dynamic host pressures, supporting its persistence and dissemination in healthcare.
Collapse
Affiliation(s)
- Piaopiao Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Juan Hu
- Department of Intensive Care Unit, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wenhao Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Weixiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yunsong Yu
- Department of Infectious Diseases, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xia Zheng
- Department of Intensive Care Unit, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tingting Qu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Shen Y, Cao J, Hu T, Yang X, Zhao Y, Shen Y, Ye B, Yu Y, Wu D. Successful Treatment of an AML Patient Infected with Hypervirulent ST463 Pseudomonas Aeruginosa Harboring Rare Carbapenem-Resistant Genes blaAFM-1 and blaKPC-2 Following Allogeneic Hematopoietic Stem Cell Transplantation. Infect Drug Resist 2024; 17:1357-1365. [PMID: 38600953 PMCID: PMC11005936 DOI: 10.2147/idr.s455746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/25/2024] [Indexed: 04/12/2024] Open
Abstract
Background Carbapenem-resistant P. aeruginosa (CRPA) is a common hospital-acquired bacterium. It exhibits high resistance to many antibiotics, including ceftazidime/avibactam and cefteolozane/tazobactam. The presence of carbapenem-resistant genes and co-existence Klebsiella pneumoniae carbapenemase (KPC) and metallo-β-lactamases (MBLs) further inactivated all β-lactams. Understanding the resistance genes of CRPA can help in uncovering the resistance mechanism and guiding anti-infective treatment. Herein, we reported a case of perianal infection with hypervirulent ST463 Pseudomonas aeruginosa. Case Presentation The case is a 32-year-old acute myeloid leukemia (AML) patient with fever and septic shock during hematopoietic stem cell transplantation (HSCT), and the pathogen was finally identified as a highly virulent sequence type 463 (ST463) P. aeruginosa harboring carbapenem-resistant genes blaAFM-1 and blaKPC-2, which was detected in the bloodstream and originated from a perianal infection. The strain was resistant to ceftazidime/avibactam but successfully treated with polymyxin B, surgical debridement, and granulocyte engraftment after HSCT. The AML was cured during the 19-month follow-up. Conclusion This case emphasizes the importance of metagenomic next-generation sequencing (mNGS) and whole-genome sequencing (WGS) in identifying microbes with rare resistant genes, and managing CRPA, especially in immunocompromised patients. Polymyxin B may be the least resistant option.
Collapse
Affiliation(s)
- Yingying Shen
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People’s Republic of China
- National Traditional Chinese Medicine Clinical Research Base (Hematology), Hangzhou, Zhejiang, People’s Republic of China
| | - Junmin Cao
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People’s Republic of China
| | - Tonglin Hu
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People’s Republic of China
- National Traditional Chinese Medicine Clinical Research Base (Hematology), Hangzhou, Zhejiang, People’s Republic of China
| | - Xiawan Yang
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People’s Republic of China
- National Traditional Chinese Medicine Clinical Research Base (Hematology), Hangzhou, Zhejiang, People’s Republic of China
| | - Yuechao Zhao
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People’s Republic of China
- National Traditional Chinese Medicine Clinical Research Base (Hematology), Hangzhou, Zhejiang, People’s Republic of China
| | - Yiping Shen
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People’s Republic of China
- National Traditional Chinese Medicine Clinical Research Base (Hematology), Hangzhou, Zhejiang, People’s Republic of China
| | - Baodong Ye
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People’s Republic of China
- National Traditional Chinese Medicine Clinical Research Base (Hematology), Hangzhou, Zhejiang, People’s Republic of China
| | - Yunsong Yu
- Department of Infectious Diseases, Zhejiang Provincial People’s Hospital, Hangzhou, Zhejiang, People’s Republic of China
| | - Dijiong Wu
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People’s Republic of China
- National Traditional Chinese Medicine Clinical Research Base (Hematology), Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
5
|
Li J, Tang M, Liu Z, Wei Y, Xia F, Xia Y, Hu Y, Wang H, Zou M. Molecular characterization of extensively drug-resistant hypervirulent Pseudomonas aeruginosa isolates in China. Ann Clin Microbiol Antimicrob 2024; 23:13. [PMID: 38347529 PMCID: PMC10863134 DOI: 10.1186/s12941-024-00674-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/04/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Recently, extensively drug-resistant Pseudomonas aeruginosa (XDR-PA) isolates have been increasingly detected and posed great challenges to clinical anti-infection treatments. However, little is known about extensively resistant hypervirulent P. aeruginosa (XDR-hvPA). In this study, we investigate its epidemiological characteristics and provide important basis for preventing its dissemination. METHODS Clinical XDR-PA isolates were collected from January 2018 to January 2023 and identified using matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry; antibiotic susceptibility testing was performed by broth microdilution method, and minimum inhibitory concentrations (MICs) were evaluated. Virulence was evaluated using the Galleria mellonella infection model; molecular characteristics, including resistance genes, virulence genes, and homology, were determined using whole-genome sequencing. RESULTS A total of 77 XDR-PA strains were collected; 47/77 strains were XDR-hvPA. Patients aged > 60 years showed a significantly higher detection rate of XDR-hvPA than of XDR-non-hvPA. Among the 47 XDR-hvPA strains, 24 strains carried a carbapenemase gene, including blaGES-1 (10/47), blaVIM-2 (6/47), blaGES-14 (4/47), blaIMP-45 (2/47), blaKPC-2 (1/47), and blaNDM-14 (1/47). ExoU, exoT, exoY, and exoS, important virulence factors of PA, were found in 31/47, 47/47, 46/47, and 29/47 strains, respectively. Notably, two XDR-hvPA simultaneously co-carried exoU and exoS. Six serotypes (O1, O4-O7, and O11) were detected; O11 (19/47), O7 (13/47), and O4 (9/47) were the most prevalent. In 2018-2020, O4 and O7 were the most prevalent serotypes; 2021 onward, O11 (16/26) was the most prevalent serotype. Fourteen types of ST were detected, mainly ST235 (14/47), ST1158 (13/47), and ST1800 (7/47). Five global epidemic ST235 XDR-hvPA carried blaGES and showed the MIC value of ceftazidime/avibactam reached the susceptibility breakpoint (8/4 mg/L). CONCLUSIONS The clinical detection rate of XDR-hvPA is unexpectedly high, particularly in patients aged > 60 years, who are seemingly more susceptible to contracting this infection. Clonal transmission of XDR-hvPA carrying blaGES, which belongs to the global epidemic ST235, was noted. Therefore, the monitoring of XDR-hvPA should be strengthened, particularly for elderly hospitalized patients, to prevent its spread.
Collapse
Affiliation(s)
- Jun Li
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Mengli Tang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Zhaojun Liu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yuhan Wei
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Fengjun Xia
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yubing Xia
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yongmei Hu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Haichen Wang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Mingxiang Zou
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
6
|
Zhou L, Yang C, Zhang X, Yao J, Chen L, Tu Y, Li X. Characterization of a novel Tn6485h transposon carrying both blaIMP-45 and blaAFM-1 integrated into the IncP-2 plasmid in a carbapenem-resistant Pseudomonas aeruginosa. J Glob Antimicrob Resist 2023; 35:307-313. [PMID: 37879457 DOI: 10.1016/j.jgar.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/21/2023] [Accepted: 10/14/2023] [Indexed: 10/27/2023] Open
Abstract
OBJECTIVES To characterize a carbapenem-resistant Pseudomonas aeruginosa (CRPA) with an IncP-2 plasmid containing a novel transposon, Tn6485h, which carries both blaIMP-45 and blaAFM-1. METHODS Antimicrobial susceptibility testing and filter mating experiment were performed on PA942. The stability of the plasmid carrying both blaIMP-45 and blaAFM-1 was carried out. We determined the growth rate of the transconjugant to investigate fitness cost. Additionally, whole-genome sequencing and genomic analysis were performed on PA942. RESULTS PA942 strain was resistant to most antibiotics except for ciprofloxacin and colistin. Bioinformatics analysis confirmed that PA942 contains an IncP-2 plasmid with a novel transposon Tn6485h carrying both blaIMP-45 and blaAFM-1. The plasmid pPA942-IMP45 can be transferred into recipient bacteria PAO1Rif with an efficiency of 2.2 × 10-7 and the transconjugant PAO1Rif/ pPA942-IMP45 can be stably inherited for 10 generations in the absence of antibiotics. CONCLUSION We report a carbapenem-resistant P. aeruginosa strain with an IncP-2 plasmid containing a novel transposon, Tn6485h, which carries both blaIMP-45 and blaAFM-1. The IncP-2 plasmid and transposon Tn6485h may contribute to the spread of MBL genes. Therefore, effective measures to prevent the spread of these plasmids should be taken.
Collapse
Affiliation(s)
- Longjie Zhou
- Centre of Laboratory Medicine, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chuanxin Yang
- Department of Laboratory Medicine, Affiliated Sixth People's Hospital South Campus, Shanghai Jiaotong University, Shanghai, China
| | - Xiaofan Zhang
- Centre of Laboratory Medicine, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jiayao Yao
- Centre of Laboratory Medicine, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lingxia Chen
- Centre of Laboratory Medicine, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuexing Tu
- Department of Critical Care Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China.
| | - Xi Li
- Centre of Laboratory Medicine, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Zhang P, Wu W, Wang N, Feng H, Wang J, Wang F, Zhang Y, Chen H, Yang Q, Jiang Y, Qu T. Pseudomonas aeruginosa High-Risk Sequence Type 463 Co-Producing KPC-2 and AFM-1 Carbapenemases, China, 2020-2022. Emerg Infect Dis 2023; 29:2136-2140. [PMID: 37735755 PMCID: PMC10521588 DOI: 10.3201/eid2910.230509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023] Open
Abstract
We report the clonal spread and evolution of high-risk Pseudomonas aeruginosa sequence type 463 co-producing KPC-2 and AFM-1 carbapenemases isolated from hospital patients in China during 2020-2022. Those strains pose a substantial public health threat and surveillance and stricter infection-control measures are essential to prevent further infections.
Collapse
Affiliation(s)
| | | | - Nanfei Wang
- The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China (P. Zhang, W. Wu, N. Wang, H. Feng, J. Wang, F. Wang, Y. Zhang, H. Chen, Q. Yang, T. Qu)
- Zhejiang University School of Medicine Sir Run Run Shaw Hospital, Hangzhou (Y. Jiang)
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou (Y. Jiang)
| | - Haiting Feng
- The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China (P. Zhang, W. Wu, N. Wang, H. Feng, J. Wang, F. Wang, Y. Zhang, H. Chen, Q. Yang, T. Qu)
- Zhejiang University School of Medicine Sir Run Run Shaw Hospital, Hangzhou (Y. Jiang)
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou (Y. Jiang)
| | - Jie Wang
- The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China (P. Zhang, W. Wu, N. Wang, H. Feng, J. Wang, F. Wang, Y. Zhang, H. Chen, Q. Yang, T. Qu)
- Zhejiang University School of Medicine Sir Run Run Shaw Hospital, Hangzhou (Y. Jiang)
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou (Y. Jiang)
| | - Fang Wang
- The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China (P. Zhang, W. Wu, N. Wang, H. Feng, J. Wang, F. Wang, Y. Zhang, H. Chen, Q. Yang, T. Qu)
- Zhejiang University School of Medicine Sir Run Run Shaw Hospital, Hangzhou (Y. Jiang)
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou (Y. Jiang)
| | - Yan Zhang
- The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China (P. Zhang, W. Wu, N. Wang, H. Feng, J. Wang, F. Wang, Y. Zhang, H. Chen, Q. Yang, T. Qu)
- Zhejiang University School of Medicine Sir Run Run Shaw Hospital, Hangzhou (Y. Jiang)
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou (Y. Jiang)
| | - Hongchao Chen
- The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China (P. Zhang, W. Wu, N. Wang, H. Feng, J. Wang, F. Wang, Y. Zhang, H. Chen, Q. Yang, T. Qu)
- Zhejiang University School of Medicine Sir Run Run Shaw Hospital, Hangzhou (Y. Jiang)
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou (Y. Jiang)
| | - Qing Yang
- The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China (P. Zhang, W. Wu, N. Wang, H. Feng, J. Wang, F. Wang, Y. Zhang, H. Chen, Q. Yang, T. Qu)
- Zhejiang University School of Medicine Sir Run Run Shaw Hospital, Hangzhou (Y. Jiang)
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou (Y. Jiang)
| | | | | |
Collapse
|
8
|
An XDR Pseudomonas aeruginosa ST463 Strain with an IncP-2 Plasmid Containing a Novel Transposon Tn 6485f Encoding blaIMP-45 and blaAFM-1 and a Second Plasmid with Two Copies of blaKPC-2. Microbiol Spectr 2023; 11:e0446222. [PMID: 36651737 PMCID: PMC9927494 DOI: 10.1128/spectrum.04462-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The increased carbapenem resistance among Pseudomonas aeruginosa has become a serious health issue worldwide. We reported an extensively drug-resistant (XDR) P. aeruginosa PA30 isolate which belonged to sequence type ST463 and contained an IncP-2 plasmid (pPA30_1) carrying two genes, namely, blaIMP-45 and blaAFM-1, which encoded the metallo-β-lactamases AFM-1 and IMP-45, respectively. Additionally, the strain had a plasmid (pPA30_2) with two copies of the blaKPC-2 genes embedded. The plasmid pPA30_1 was highly similar to the previously reported plasmid pHS17-127, which has the same genetic architecture. This plasmid contained blaIMP-45, located in a second gene cassette of the integron In786, carried by a Tn1403-derivative transposon acquiring an ISCR27n3-blaAFM-1 structure. Interestingly, the transposon in pPA30_1 acquired an extra ISCR1-qnrVC6 module and formed a novel transposon, which was subsequently annotated as Tn6485f. The blaKPC-2 genes in pPA30_2 underwent duplication due to the inversion of the IS26-blaKPC-2-IS26 element, which resulted in two copies of blaKPC-2. IMPORTANCE The ST463 clone is an emerging high-risk sequence type that is spreading with blaKPC-2-containing plasmids. The core blaKPC-2 genetic platform is ISKpn27-blaKPC-2-ISKpn6 in almost all samples, and the adjacent region beyond the core platform varies by IS26-mediated inversion or duplication events, amplifying the blaKPC-2 gene copies. The ST463 P. aeruginosa strain PA30 in our study contains another two metallo-β-lactamase genes, namely, blaIMP-45 and blaAFM-1, in a novel transposon Tn6485f that is harbored by the IncP-2 megaplasmid. The pPA30_1 carrying blaIMP-45 and blaAFM-1 is highly related to pHS17-127 from the ST369 P. aeruginosa strain, indicating the putative dissemination of the megaplasmid between different clones.
Collapse
|